2016
Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries
Huang AH, Balestrini JL, Udelsman BV, Zhou KC, Zhao L, Ferruzzi J, Starcher BC, Levene MJ, Humphrey JD, Niklason LE. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries. Tissue Engineering Part C Methods 2016, 22: 524-533. PMID: 27108525, PMCID: PMC4921901, DOI: 10.1089/ten.tec.2015.0309.Peer-Reviewed Original ResearchConceptsTissue-engineered blood vesselsBiaxial loadingMechanical propertiesMechanical strengthFiber orientationMultiaxial loadingLoading conditionsMechanical integrityBiaxial stretchingCollagen undulationArtificial skinNovel bioreactorMechanical failureMatrix orientationBiaxial stretchLoadingAxial stretchCollagen fiber orientationSuture strengthNative arteriesTissue equivalentsStrengthPropertiesCircumferential stretchMatrix content
2011
Readily Available Tissue-Engineered Vascular Grafts
Dahl SL, Kypson AP, Lawson JH, Blum JL, Strader JT, Li Y, Manson RJ, Tente WE, DiBernardo L, Hensley MT, Carter R, Williams TP, Prichard HL, Dey MS, Begelman KG, Niklason LE. Readily Available Tissue-Engineered Vascular Grafts. Science Translational Medicine 2011, 3: 68ra9. PMID: 21289273, DOI: 10.1126/scitranslmed.3001426.Peer-Reviewed Original ResearchConceptsTissue-engineered vascular graftsVascular graftsMechanical propertiesSynthetic graftsAutologous tissueCoronary artery bypassCanine smooth muscle cellsPolyglycolic acid scaffoldsTissue engineeringHuman vascular graftsSmooth muscle cellsSynthetic vascular graftsArtery bypassSuch patientsArteriovenous accessArterial bypassHuman blood vesselsCardiovascular diseaseExcellent patencyBaboon modelIntimal hyperplasiaDog modelCellular materialPatientsGraft