2018
Polycystin-1, the product of the polycystic kidney disease gene PKD1, is post-translationally modified by palmitoylation
Roy K, Marin EP. Polycystin-1, the product of the polycystic kidney disease gene PKD1, is post-translationally modified by palmitoylation. Molecular Biology Reports 2018, 45: 1515-1521. PMID: 30073588, DOI: 10.1007/s11033-018-4224-6.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseaseProteins polycystin-1End-stage renal diseasePossible pharmacologic targetsStage renal diseasePossible modifiable factorsRate of progressionDominant polycystic kidney diseaseExpression levelsPolycystic kidney diseaseRenal diseaseKidney diseaseModifiable factorsCommon causePharmacologic targetPolycystin-1Carboxyl-terminal fragmentKidney cystsPC1 expressionPotential causesDiseaseDistinct mutationsPost-translational modificationsMultiple complementary approachesGenes PKD1
2017
Palmitoylation of the ciliary GTPase ARL13b is necessary for its stability and its role in cilia formation
Roy K, Jerman S, Jozsef L, McNamara T, Onyekaba G, Sun Z, Marin EP. Palmitoylation of the ciliary GTPase ARL13b is necessary for its stability and its role in cilia formation. Journal Of Biological Chemistry 2017, 292: 17703-17717. PMID: 28848045, PMCID: PMC5663873, DOI: 10.1074/jbc.m117.792937.Peer-Reviewed Original ResearchConceptsPost-translational attachmentMost mammalian cellsCiliary GTPase Arl13bCilia localizationProtein palmitoylationCiliary proteinsCilia proteinsProtein localizationCilia formationMammalian cellsCilia functionPalmitoylationPrimary ciliaPlasma membraneCilia resorptionArl13bFunctional importanceMyristoylationCiliaCritical roleProteinMouse kidneyLocalizationDepalmitoylationCells