2023
Age-associated sex difference in the expression of mitochondria-based redox sensitive proteins and effect of pioglitazone in nonhuman primate brain
Jamwal S, Blackburn J, Elsworth J. Age-associated sex difference in the expression of mitochondria-based redox sensitive proteins and effect of pioglitazone in nonhuman primate brain. Biology Of Sex Differences 2023, 14: 65. PMID: 37770961, PMCID: PMC10540392, DOI: 10.1186/s13293-023-00551-6.Peer-Reviewed Original ResearchConceptsSubstantia nigraSex-dependent expressionPrimate brainAdult male monkeysCerebrospinal fluidMale monkeysPeroxisome proliferator-activated receptor gamma agonistProliferator-activated receptor gamma agonistsEffect of pioglitazoneWeeks of treatmentReceptor gamma agonistsGreater expressionAdult female monkeysNonhuman primate brainNovel neuroprotective treatmentAfrican green monkeysSex-based differencesOral pioglitazoneNeuroprotective treatmentPIO treatmentRisk factorsCNS disordersGamma agonistsPreclinical studiesParkinson's disease
2021
Expression of PON2 isoforms varies among brain regions in male and female African green monkeys
Jamwal S, Blackburn JK, Elsworth JD. Expression of PON2 isoforms varies among brain regions in male and female African green monkeys. Free Radical Biology And Medicine 2021, 178: 215-218. PMID: 34890766, PMCID: PMC8760629, DOI: 10.1016/j.freeradbiomed.2021.12.005.Peer-Reviewed Original ResearchConceptsAfrican green monkeysParkinson's diseaseBrain regionsParaoxonase 2Different brain regionsFemale monkeysGreen monkeysPON2 expressionOxidative stress-related neurodegenerative disordersFemale African green monkeysNeurodegenerative disordersMale African green monkeysOxidative stressPON2 protein expressionAnti-inflammatory propertiesExpression levelsSignificant differencesBrain tissue samplesDorsolateral prefrontal cortexNeuroprotective strategiesWestern blotting techniquesDopaminergic neuronsPON2 proteinPrimate brainProtective rolePioglitazone transiently stimulates paraoxonase-2 expression in male nonhuman primate brain: Implications for sex-specific therapeutics in neurodegenerative disorders
Blackburn JK, Jamwal S, Wang W, Elsworth JD. Pioglitazone transiently stimulates paraoxonase-2 expression in male nonhuman primate brain: Implications for sex-specific therapeutics in neurodegenerative disorders. Neurochemistry International 2021, 152: 105222. PMID: 34767873, PMCID: PMC8712400, DOI: 10.1016/j.neuint.2021.105222.Peer-Reviewed Original ResearchConceptsPON2 expressionParkinson's diseaseParaoxonase 2Male African green monkeysShort-term animal modelsOxidative stressPeroxisome proliferator-activated receptor gammaEffect of pioglitazoneWeeks of treatmentProliferator-activated receptor gammaNonhuman primate brainParaoxonase-2 expressionRegion-dependent expressionSex-specific therapeuticsAnti-diabetic drug pioglitazoneAfrican green monkeysDorsolateral prefrontal cortexOral pioglitazonePreclinical evidenceSubstantia nigraClinical trialsPON2 mRNAAnimal modelsPioglitazonePrimate brainSex-based disparity in paraoxonase-2 expression in the brains of African green monkeys
Jamwal S, Blackburn JK, Elsworth JD. Sex-based disparity in paraoxonase-2 expression in the brains of African green monkeys. Free Radical Biology And Medicine 2021, 167: 201-204. PMID: 33722626, PMCID: PMC8096713, DOI: 10.1016/j.freeradbiomed.2021.03.003.Peer-Reviewed Original ResearchConceptsAfrican green monkeysParaoxonase 2Parkinson's diseaseBrain regionsGreen monkeysOxidative stressReactive oxygen speciesAnti-inflammatory propertiesSex-based disparitiesParaoxonase-2 expressionDifferent brain regionsNigrostriatal systemPON2 expressionDevelopment of therapeuticsNeurodegenerative disordersDiseaseProtein levelsROS levelsLower ROS levelsMitochondrial performanceSex-based variationDisordersMonkeysOxygen speciesMales
2020
PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders
Jamwal S, Blackburn J, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacology & Therapeutics 2020, 219: 107705. PMID: 33039420, PMCID: PMC7887032, DOI: 10.1016/j.pharmthera.2020.107705.Peer-Reviewed Original ResearchConceptsNeurodegenerative disordersParkinson's diseaseAlzheimer's diseaseParaoxonase 2Mitochondrial biogenesisNeurodegenerative diseasesHuntington's diseasePeroxisome proliferator-activated receptorProliferator-activated receptorPotential therapeutic targetDevastating neurological disorderFunction of neuronsPeroxisome proliferator-activated receptor gamma co-activator-1 alphaPharmacological-based therapiesSymptomatic treatmentCurrent therapiesClinical trialsLigand-inducible transcription factorsTherapeutic targetNeurological disordersDiseasePPARγ modulatorsProgressive lossMitochondrial dysfunctionPromising targetGeneration of Pluripotent Stem Cells Using Somatic Cell Nuclear Transfer and Induced Pluripotent Somatic Cells from African Green Monkeys
Chung YG, Seay M, Elsworth J, Redmond D. Generation of Pluripotent Stem Cells Using Somatic Cell Nuclear Transfer and Induced Pluripotent Somatic Cells from African Green Monkeys. Stem Cells And Development 2020, 29: 1294-1307. PMID: 32715987, DOI: 10.1089/scd.2020.0059.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell LineChlorocebus aethiopsChromosome BandingCloning, OrganismCulture MediaCytogenetic AnalysisDNADopaminergic NeuronsEmbryonic DevelopmentEmbryonic Stem CellsFemaleGenotypeHumansInduced Pluripotent Stem CellsMitochondriaNuclear Transfer TechniquesOvaryTyrosine 3-MonooxygenaseConceptsAfrican green monkeysInduced pluripotent stem cellsCell linesGreen monkeysStem cellsEffective cell replacement therapyPromising potential therapyPluripotent stem cellsDopamine depletionReplacement therapyDopamine neuronsCell replacement therapyBrain pathologyDonor monkeyParkinson's diseasePotential therapyMonkey studiesFemale monkeysClinical predictive powerImmune rejectionImmune systemAccidental exposurePossible treatmentIPSC linesRodent experimentsGene therapy and immunotherapy as promising strategies to combat Huntington’s disease-associated neurodegeneration: emphasis on recent updates and future perspectives
Jamwal S, Elsworth JD, Rahi V, Kumar P. Gene therapy and immunotherapy as promising strategies to combat Huntington’s disease-associated neurodegeneration: emphasis on recent updates and future perspectives. Expert Review Of Neurotherapeutics 2020, 20: 1123-1141. PMID: 32720531, DOI: 10.1080/14737175.2020.1801424.Peer-Reviewed Original ResearchConceptsGene therapyClinical trialsDisease-modifying therapiesMutant huntingtinTreatment of HDAntibody-based therapiesPotential therapeutic interventionsNew therapeutic targetsGene-based therapiesImmune activationClinical dataImmunotherapyTherapeutic targetFunctional restorationTherapeutic interventionsTherapyHD pathogenesisMHTT proteinRecent updatesFuture perspectivesPromising strategyTrialsCurrent statusConsiderable attentionHDParkinson’s disease treatment: past, present, and future
Elsworth JD. Parkinson’s disease treatment: past, present, and future. Journal Of Neural Transmission 2020, 127: 785-791. PMID: 32172471, PMCID: PMC8330829, DOI: 10.1007/s00702-020-02167-1.Peer-Reviewed Original ResearchPioglitazone activates paraoxonase-2 in the brain: A novel neuroprotective mechanism
Blackburn JK, Curry DW, Thomsen AN, Roth RH, Elsworth JD. Pioglitazone activates paraoxonase-2 in the brain: A novel neuroprotective mechanism. Experimental Neurology 2020, 327: 113234. PMID: 32044330, PMCID: PMC7089823, DOI: 10.1016/j.expneurol.2020.113234.Peer-Reviewed Original ResearchConceptsParaoxonase 2Novel neuroprotective mechanismParaoxonase-2 expressionAnti-diabetic drug pioglitazoneReactive oxygen species productionNeuroprotective strategiesNeuroprotective mechanismsBrain traumaMouse striatumOxygen species productionParkinson's diseaseAlzheimer's diseaseTherapeutic potentialPioglitazoneDiseaseOxidative stressDrug pioglitazoneSpecies productionBrainNeuroprotectionIschemiaStriatumExpressionPathologyTrauma
2018
Human–Monkey Chimeras for Modeling Human Disease: Opportunities and Challenges
De Los Angeles A, Hyun I, Latham S, Elsworth J, Redmond D. Human–Monkey Chimeras for Modeling Human Disease: Opportunities and Challenges. Stem Cells And Development 2018, 27: 1599-1604. PMID: 30319057, PMCID: PMC7366261, DOI: 10.1089/scd.2018.0162.Peer-Reviewed Original ResearchConceptsImportant ethical considerationsModeling Human DiseaseHuman PS cellsInterspecies chimerasUse of monkeysChimera researchEthical considerationsEthical concernsInvasive researchCell researchPolitical issuesScientific valueBiomedical researchLight of advancesHuman stem cellsJurisdictionsPS cellsHoly grailQuestions
2017
Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing
Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY, Wing A, Goldberg EL, Youm YH, Brown CW, Elsworth J, Rodeheffer MS, Schultze JL, Dixit VD. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 2017, 550: 119-123. PMID: 28953873, PMCID: PMC5718149, DOI: 10.1038/nature24022.Peer-Reviewed Original ResearchAdipocytesAdipose TissueAgingAnimalsCaspase 1CatecholaminesGene Expression ProfilingGene Expression RegulationGrowth Differentiation Factor 3InflammasomesLipaseLipolysisMacrophagesMiceMonoamine OxidaseMonoamine Oxidase InhibitorsNLR Family, Pyrin Domain-Containing 3 ProteinNorepinephrineSterol Esterase
2016
Transplantation of Neural Stem Cells into Patients with Parkinson’s Disease (P3.360)
Semechkin R, Garitaonandia I, Gonzalez R, Poustovoitov M, Abramihina T, Trudy C, Noskov A, Sherman G, Semechkin A, Laurent L, Elsworth J, Snyder E, Redmond E, Evans A. Transplantation of Neural Stem Cells into Patients with Parkinson’s Disease (P3.360). Neurology 2016, 86 DOI: 10.1212/wnl.86.16_supplement.p3.360.Peer-Reviewed Original Research
2015
Animal models in regenerative medicine
Bubak A, Elsworth J, Sladek J. Animal models in regenerative medicine. 2015, 301-316. DOI: 10.1002/9781118846193.ch16.Peer-Reviewed Original ResearchAnimal modelsCurrent clinical therapeuticsClinical trialsStem cellsRegenerative medicineFuture clinical trialsAppropriate animal modelsHuman therapeuticsStem cell trialsCell trialsHuman studiesClinical settingClinical therapeuticsTranslational researchUnsuccessful trialsTrialsDiseaseSpecific diseasesChallenging goalOptimal techniqueTherapeuticsCellsLoss of confidence
2009
P.3.d.019 Asenapine improves cognition and cortical serotonergic function in monkeys with phencyclidine-induced impairment
Jentsch J, Elsworth J, Shahid M, Marston H, Roth R. P.3.d.019 Asenapine improves cognition and cortical serotonergic function in monkeys with phencyclidine-induced impairment. European Neuropsychopharmacology 2009, 19: s565. DOI: 10.1016/s0924-977x(09)70901-0.Peer-Reviewed Original ResearchDopamine
Elsworth J, Roth R. Dopamine. 2009, 539-547. DOI: 10.1016/b978-008045046-9.00683-5.Peer-Reviewed Original ResearchCo-localized peptidesDA neuron activityDopamine cell groupsDendritic spine synapsesDifferent firing patternsSpine densityDA neurotransmissionSpine synapsesParkinson's diseaseNeuron activityVolume transmissionPharmacological perspectiveCell groupsFiring patternsEndogenous mechanismsDiseaseAutoreceptorsNeurotransmissionSchizophreniaBrainSynapses
2008
Corrigendum to “prenatal cocaine exposure enhances responsivity of locus coeruleus norepinephrine neurons: Role of autoreceptors” [Neuroscience 147 (2007) 419–427]
Elsworth J, Morrow B, Nguyen V, Mitra J, Picciotto M, Roth R. Corrigendum to “prenatal cocaine exposure enhances responsivity of locus coeruleus norepinephrine neurons: Role of autoreceptors” [Neuroscience 147 (2007) 419–427]. Neuroscience 2008, 156: 800. DOI: 10.1016/j.neuroscience.2008.08.024.Peer-Reviewed Original Research
2005
Neural Stem Cells Implanted into MPTP-Treated Monkeys Increase the Size of Endogenous Tyrosine Hydroxylase-Positive Cells Found in the Striatum: A Return to Control Measures
Bjugstad K, Redmond D, Teng Y, Elsworth J, Roth R, Blanchard B, Snyder E, Sladek J. Neural Stem Cells Implanted into MPTP-Treated Monkeys Increase the Size of Endogenous Tyrosine Hydroxylase-Positive Cells Found in the Striatum: A Return to Control Measures. Cell Transplantation 2005, 14: 183-192. PMID: 15929553, DOI: 10.3727/000000005783983098.Peer-Reviewed Original ResearchConceptsTyrosine hydroxylase-positive cellsNeural stem cellsHydroxylase-positive cellsSubstantia nigraHuman neural stem cellsParkinson's diseaseHuman NSCsCaudate nucleusEffects of NSCsPresence of NSCsImplanted neural stem cellsRight substantia nigraUntreated control monkeysRight caudate nucleusCell populationsAfrican green monkeysEndogenous cell populationsStem cellsMPTP damageMPTP treatmentStriatal environmentNigrostriatal pathwayDopamine neuronsControl monkeysSelective dopaminergic
2001
Prenatal cocaine exposure increases mesoprefrontal dopamine neuron responsivity to mild stress
Elsworth J, Morrow B, Roth R. Prenatal cocaine exposure increases mesoprefrontal dopamine neuron responsivity to mild stress. Synapse 2001, 42: 80-83. PMID: 11574943, DOI: 10.1002/syn.1102.Peer-Reviewed Original ResearchConceptsPrenatal cocaine exposurePrefrontal cortexCocaine exposureShort-term memory deficitsVentromedial prefrontal cortexShort-term memoryMedial prefrontal cortexDopamine neuronsAdolescent ratsCognitive deficitsMemory deficitsMesoprefrontal dopamine systemPrenatal cocaineMild footshock stressDopamine systemDeficitsFootshock stressNeurobehavioral deficitsDopamine turnoverIntravenous modelRodent modelsBehavioral abnormalitiesFetal developmentMild stressCortexPrenatal exposure to cocaine reduces the number and enhances reactivity of A10 dopaminergic neurons to environmental stress
Morrow B, Elsworth J, Roth R. Prenatal exposure to cocaine reduces the number and enhances reactivity of A10 dopaminergic neurons to environmental stress. Synapse 2001, 41: 337-344. PMID: 11494404, DOI: 10.1002/syn.1090.Peer-Reviewed Original ResearchConceptsA10 dopamine neuronsDopamine neuronsDopaminergic neuronsPrenatal exposurePrenatal saline controlsTyrosine hydroxylase immunoreactiveA10 dopaminergic neuronsCocaine-induced reductionRat dopaminergic neuronsCocaine-exposed ratsPoor cognitive performanceYoung adult offspringUnderlying biochemical changesDopaminergic functionA9 regionSaline controlsIntravenous modelPerinatal lossAdult offspringIntermittent footshockImmediate early genesCognitive deficitsNeuronal systemsBehavioral effectsCell groupsNicotine Receptor Inactivation Decreases Sensitivity to Cocaine
Zachariou V, Caldarone B, Weathers-Lowin A, George T, Elsworth J, Roth R, Changeux J, Picciotto M. Nicotine Receptor Inactivation Decreases Sensitivity to Cocaine. Neuropsychopharmacology 2001, 24: 576-589. PMID: 11282258, DOI: 10.1016/s0893-133x(00)00224-4.Peer-Reviewed Original ResearchConceptsPlace preferenceDA turnoverLow doseHigh-affinity nicotinic acetylcholine receptorsMesolimbic DA systemHigh-affinity nAChRsNicotinic antagonist mecamylamineWild-type miceMesolimbic dopamine systemFos-related antigensProperties of nicotineCocaine place preferenceΒ2 subunitNicotinic acetylcholine receptorsAntagonist mecamylamineDA releaseMetabolite DOPACNeurochemical changesSubthreshold doseType miceDopamine systemPsychomotor stimulantsAcetylcholine receptorsHigh dosesBrain regions