2021
Structural insights into the cause of human RSPH4A primary ciliary dyskinesia
Zhao Y, Pinskey J, Lin J, Yin W, Sears P, Daniels L, Zariwala M, Knowles M, Ostrowski L, Nicastro D. Structural insights into the cause of human RSPH4A primary ciliary dyskinesia. Molecular Biology Of The Cell 2021, 32: 1202-1209. PMID: 33852348, PMCID: PMC8351563, DOI: 10.1091/mbc.e20-12-0806.Peer-Reviewed Original ResearchConceptsStructural basisCryo-electron tomographyRadial spokesCentral pair complexUnderlying structural basisAxonemal repeatEukaryotic organellesArch domainThree-dimensional structureSubtomogram averagingOrgan positioningCell motilityStructural insightsPrimary ciliary dyskinesiaCiliaHuman ciliaHuman respiratory ciliaRS1Primary defectStructure determinationCiliary dyskinesiaHuman healthOrganellesFlagellaRepeats
2014
Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia
Lin J, Yin W, Smith MC, Song K, Leigh MW, Zariwala MA, Knowles MR, Ostrowski LE, Nicastro D. Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. Nature Communications 2014, 5: 5727. PMID: 25473808, PMCID: PMC4267722, DOI: 10.1038/ncomms6727.Peer-Reviewed Original ResearchConceptsCryo-electron tomographyNative 3D structureNormal human developmentDistant speciesHuman ciliaCilia structurePCD phenotypeCilia dysfunctionHuman diseasesNative structurePrimary ciliary dyskinesiaRadial spokesCiliaEssential roleFunctional heterogeneityHuman respiratory ciliaUnprecedented detailPrimary defectCiliary dyskinesiaUnknown primary defect
2012
The CSC connects three major axonemal complexes involved in dynein regulation
Heuser T, Dymek EE, Lin J, Smith EF, Nicastro D. The CSC connects three major axonemal complexes involved in dynein regulation. Molecular Biology Of The Cell 2012, 23: 3143-3155. PMID: 22740634, PMCID: PMC3418309, DOI: 10.1091/mbc.e12-05-0357.Peer-Reviewed Original ResearchConceptsNexin-dynein regulatory complexDynein regulationRadial spokesAxonemal complexCryo-electron tomographyWild-type motilityRegulatory complexFlagellar motilityDynein motorsChlamydomonas flagellaMotile ciliaStable assemblyFlagellaDifferent functionsRegulationRS1ComplexesMotilityStructural heterogeneityRS2Human healthImportant roleOrganellesHomologuesCSCThe structural heterogeneity of radial spokes in cilia and flagella is conserved
Lin J, Heuser T, Carbajal‐González B, Song K, Nicastro D. The structural heterogeneity of radial spokes in cilia and flagella is conserved. Cytoskeleton 2012, 69: 88-100. PMID: 22170736, PMCID: PMC3307805, DOI: 10.1002/cm.21000.Peer-Reviewed Original ResearchConceptsFlagellar motilityRadial spokesNexin-dynein regulatory complexRegulatory complexFlagellar structureMost organismsThree-dimensional structureSubtomogram averagingCryoelectron tomographyDynein motorsDynein activityChlamydomonas flagellaMotile ciliaFlagellaSperm flagellaUbiquitous componentOrganismsFunctional differencesEssential roleCiliaRepeat unitsUnprecedented detailBasal partRS1Motility
2011
Building Blocks of the Nexin-Dynein Regulatory Complex in Chlamydomonas Flagella*
Lin J, Tritschler D, Song K, Barber CF, Cobb JS, Porter ME, Nicastro D. Building Blocks of the Nexin-Dynein Regulatory Complex in Chlamydomonas Flagella*. Journal Of Biological Chemistry 2011, 286: 29175-29191. PMID: 21700706, PMCID: PMC3190725, DOI: 10.1074/jbc.m111.241760.Peer-Reviewed Original ResearchConceptsNexin-dynein regulatory complexRegulatory complexImportant regulatory nodeTwo-dimensional electrophoresisRegulatory nodesProtein phosphorylationSignal transductionPhosphorylation statusMALDI-TOF mass spectrometryDynein motorsDynein activityChlamydomonas flagellaMotile ciliaRegulatory functionsPhosphorylated isoformsCoordination of thousandsFlagellar axonemeBiochemical comparisonRadial spokesPCR analysisFlagellar bendingIsoform patternFlagellaMolecular compositionProtein