2012
ATP activates P2X receptors to mediate gap junctional coupling in the cochlea
Zhu Y, Zhao H. ATP activates P2X receptors to mediate gap junctional coupling in the cochlea. Biochemical And Biophysical Research Communications 2012, 426: 528-532. PMID: 22982314, PMCID: PMC3471361, DOI: 10.1016/j.bbrc.2012.08.119.Peer-Reviewed Original ResearchConceptsP2X receptorsGap junctional couplingCochlear gap junctionsP2Y receptor agonist UTPGap junctionsJunctional couplingP2X receptor antagonistMetabotropic purinergic receptorsReceptor agonist UTPStimulation of ATPPhysiological levelsReceptor antagonistP2Y receptorsPurinergic controlPurinergic receptorsBenzoylbenzoyl-ATPNoise stressReceptorsIonic homeostasisCochleaDisulfonic acidCritical roleIntercellular channelsATPCells
2008
ATP activates P2x receptors and requires extracellular Ca++ participation to modify outer hair cell nonlinear capacitance
Yu N, Zhao H. ATP activates P2x receptors and requires extracellular Ca++ participation to modify outer hair cell nonlinear capacitance. Pflügers Archiv - European Journal Of Physiology 2008, 457: 453-461. PMID: 18491132, PMCID: PMC5531446, DOI: 10.1007/s00424-008-0522-5.Peer-Reviewed Original ResearchMeSH Keywords4,4'-Diisothiocyanostilbene-2,2'-Disulfonic AcidAdenosine TriphosphateAnimalsCalciumChelating AgentsEgtazic AcidElectric CapacitanceGuinea PigsHair Cells, Auditory, OuterMembrane PotentialsPatch-Clamp TechniquesPotassiumPurinergic P2 Receptor AntagonistsPyridoxal PhosphateReceptors, Purinergic P2Signal TransductionSodiumSuraminTime FactorsUridine TriphosphateConceptsP2X receptorsATP effectP2Y receptor agonistsMetabotropic purinergic receptorsActive cochlear amplifierEffect of ATPReceptor agonistHearing functionP2Y receptorsPurinergic receptorsDisulfonic acidImportant mediatorReceptorsCell functionOuter hair cell electromotilityHair cell electromotilityIonotropic purinergicCochlear amplifierOHC electromotilityTetraacetic acidATPAgonistsPurinergicVoltage dependenceSuraminHemichannel-Mediated Inositol 1,4,5-Trisphosphate (IP3) Release in the Cochlea: A Novel Mechanism of IP3 Intercellular Signaling
Gossman D, Zhao H. Hemichannel-Mediated Inositol 1,4,5-Trisphosphate (IP3) Release in the Cochlea: A Novel Mechanism of IP3 Intercellular Signaling. Cell Communication & Adhesion 2008, 15: 305-315. PMID: 18979296, PMCID: PMC5543712, DOI: 10.1080/15419060802357217.Peer-Reviewed Original ResearchConceptsIntercellular signalingLong-distance intercellular communicationImportant second messengerGap junction channelsGap junction hemichannel blockerGap junction hemichannelsCochlear sensory epitheliumCassette transportersSecond messengerIntercellular communicationDeafness mutantsJunction channelsCell surfaceExtracellular mediatorsSignalingNovel mechanismSensory epitheliumHemichannelsExtracellular pathwaysTrisphosphateInositolFluorescence polarization techniqueHemichannel blockersImportant roleExtracellular application
2005
Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear
Zhao H, Yu N, Fleming C. Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proceedings Of The National Academy Of Sciences Of The United States Of America 2005, 102: 18724-18729. PMID: 16344488, PMCID: PMC1317927, DOI: 10.1073/pnas.0506481102.Peer-Reviewed Original ResearchConceptsHemichannel-mediated ATP releaseHair cellsGap junctional blockerActive cochlear amplifierAuditory sensory hair cellsSensory hair cellsEffect of ATPP2 receptorsExtracellular Ca2OHC electromotilityCochlear sensitivityATP releaseConnexin gap junctionsExtracellular ATPConnexin expressionInner earImmunofluorescent stainingHearing controlsHearing sensitivityOuter hair cell electromotilityCochleaHair cell electromotilityConnexin hemichannelsCochlear fluidsGap junctional channelsConnexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications
Zhao H. Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. European Journal Of Neuroscience 2005, 21: 1859-1868. PMID: 15869481, PMCID: PMC2548270, DOI: 10.1111/j.1460-9568.2005.04031.x.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAffinity LabelsAnimalsAnionsAnti-Inflammatory AgentsCalciumCationsCell CommunicationCell CountCell Membrane PermeabilityCells, CulturedCochleaConnexin 26ConnexinsDose-Response Relationship, DrugEnzyme InhibitorsFluorescent DyesGap JunctionsGlycyrrhetinic AcidGuinea PigsIntracellular MembranesPlatelet Aggregation InhibitorsProadifenPyridoxal PhosphateSpectrometry, FluorescenceTime FactorsConceptsCharge selectivityLarge pore sizeCationic fluorescent dyeIntercellular signalingAnionic dyesDye sizeGap junctionsMetabolic communicationPore sizeMolecule permeabilityMolecular permeabilitySelectivityEnergy moleculesCationic probePassage of ionsFluorescent dyeGap junctional permeabilityMoleculesCochlear sensory epitheliumDyeCochlear gap junctions
1998
Effect of Membrane Tension on Gap Junctional Conductance of Supporting Cells in Corti's Organ
Zhao H, Santos-Sacchi J. Effect of Membrane Tension on Gap Junctional Conductance of Supporting Cells in Corti's Organ. The Journal Of General Physiology 1998, 112: 447-455. PMID: 9758863, PMCID: PMC2229429, DOI: 10.1085/jgp.112.4.447.Peer-Reviewed Original ResearchConceptsTurgor pressureInner ear gap junctionsMembrane tensionPositive turgor pressureProtein kinase inhibitorsGap junctionsOsmotic pressure regulationPipette pressureSupporting cellsInner earMicroM HCochlear homeostasisGap junctional conductanceKinase inhibitorsMechanical forcesCell sizeJunctional conductance