2024
Adamts1 and Cyst Expansion in Polycystic Kidney Disease.
Kakade V, Akman Z, Motrapu M, Cassini M, Xu L, Moeckel G, Somlo S, Cantley L. Adamts1 and Cyst Expansion in Polycystic Kidney Disease. Journal Of The American Society Of Nephrology 2024 PMID: 39514301, DOI: 10.1681/asn.0000000557.Peer-Reviewed Original ResearchAutosomal dominant polycystic kidney diseasePolycystic kidney diseaseKidney diseaseLoss of Pkd1Cyst growthInterstitial macrophage accumulationDominant polycystic kidney diseaseInterstitial mononuclear cellsReduced cyst growthDetectable phenotypeMembrane remodelingMotif 1Progressive cyst growthIsoforms of versicanSimultaneous deletionPKD2 geneTubular basement membraneDisintegrin and metalloproteinaseRNA sequencingBasement membrane remodelingPKD1Thrombospondin motifs 1Cystic enlargementMacrophage accumulationCystic dilatation
2020
Polycystin 2 is increased in disease to protect against stress-induced cell death
Brill AL, Fischer TT, Walters JM, Marlier A, Sewanan LR, Wilson PC, Johnson EK, Moeckel G, Cantley LG, Campbell SG, Nerbonne JM, Chung HJ, Robert ME, Ehrlich BE. Polycystin 2 is increased in disease to protect against stress-induced cell death. Scientific Reports 2020, 10: 386. PMID: 31941974, PMCID: PMC6962458, DOI: 10.1038/s41598-019-57286-x.Peer-Reviewed Original ResearchConceptsPolycystin-2General cellular homeostasisCell deathStress-induced cell deathPathological cell deathAutosomal dominant polycystic kidney diseaseEndoplasmic reticulum membraneCellular homeostasisCellular stressPrimary ciliaUbiquitous expressionExpression changesCell stressReticulum membraneTransient receptor potential cation channelHuman diseasesMultiple tissuesEndogenous roleDominant polycystic kidney diseaseTissue typesCation channelsPolycystic kidney diseaseDifferent pathological statesMultiple diseasesKidney disease
2018
Semaphorin 7A in circulating regulatory T cells is increased in autosomal-dominant polycystic kidney disease and decreases with tolvaptan treatment
Lee Y, Blount KL, Dai F, Thompson S, Scher JK, Bitterman S, Droher M, Herzog EL, Moeckel G, Karihaloo A, Dahl NK. Semaphorin 7A in circulating regulatory T cells is increased in autosomal-dominant polycystic kidney disease and decreases with tolvaptan treatment. Clinical And Experimental Nephrology 2018, 22: 906-916. PMID: 29453607, DOI: 10.1007/s10157-018-1542-x.Peer-Reviewed Original ResearchConceptsPeripheral blood mononuclear cellsAutosomal dominant polycystic kidney diseaseEnd-stage renal diseaseRenal fibrosisSEMA7A expressionADPKD patientsTolvaptan treatmentPolycystic kidney diseaseKidney diseaseNumber of PBMCsExpression of SEMA7ASubsequent renal fibrosisMarkers of inflammationRegulatory T cellsADPKD kidneysBlood mononuclear cellsImmunomodulating proteinsRenal diseaseMononuclear cellsSmall kidneysKidney fibrosisLiver fibrosisRenal cystsSemaphorin 7AT cells
2017
Rapamycin treatment dose‐dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell‐cycle‐associated CDK1/cyclin axis
Li A, Fan S, Xu Y, Meng J, Shen X, Mao J, Zhang L, Zhang X, Moeckel G, Wu D, Wu G, Liang C. Rapamycin treatment dose‐dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell‐cycle‐associated CDK1/cyclin axis. Journal Of Cellular And Molecular Medicine 2017, 21: 1619-1635. PMID: 28244683, PMCID: PMC5543471, DOI: 10.1111/jcmm.13091.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibiotics, AntineoplasticCDC2 Protein KinaseCell CycleCyclinsDose-Response Relationship, DrugFemaleFounder EffectGene Expression RegulationHumansIntegrasesKidneyMaleMiceMice, TransgenicMicrofilament ProteinsPolycystic Kidney, Autosomal DominantPromoter Regions, GeneticSignal TransductionSirolimusTOR Serine-Threonine KinasesTRPP Cation ChannelsConceptsAutosomal dominant polycystic kidney diseaseEnd-stage renal diseaseMouse modelCyclin-dependent kinase 1Kidney/body weight ratioPreclinical trialsVivo preclinical resultsBody weight ratioCre transgenic miceHigh-dose rapamycinStandardized animal modelHuman autosomal dominant polycystic kidney diseaseRapamycin (mTOR) inhibitor rapamycinDominant polycystic kidney diseaseMonths of ageOrthologous mouse modelConditional knockout miceDose-dependent mannerPolycystic kidney diseaseAberrant epithelial cell proliferationEpithelial cell proliferationNew molecular targetsADPKD therapyRenal functionADPKD mouse model
2015
Human Polycystin-2 Transgene Dose-Dependently Rescues ADPKD Phenotypes in Pkd2 Mutant Mice
Li A, Tian X, Zhang X, Huang S, Ma Y, Wu D, Moeckel G, Somlo S, Wu G. Human Polycystin-2 Transgene Dose-Dependently Rescues ADPKD Phenotypes in Pkd2 Mutant Mice. American Journal Of Pathology 2015, 185: 2843-2860. PMID: 26435415, PMCID: PMC4607765, DOI: 10.1016/j.ajpath.2015.06.014.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseaseMouse modelADPKD phenotypeSevere cystic phenotypeWild-type miceDose-dependent mannerPolycystic kidney diseaseForms of ADPKDKidney diseasePancreatic cystsEffective treatmentFunctional restorationMutant miceTransgene doseMiceCyst formationReduced proliferationEpithelial cellsCystic phenotypeKidneyLiverFurther ameliorationPC2 activityPhenotypeMolecular genetic mechanisms
2014
Loss of Polycystin-1 Inhibits Bicc1 Expression during Mouse Development
Lian P, Li A, Li Y, Liu H, Liang D, Hu B, Lin D, Jiang T, Moeckel G, Qin D, Wu G. Loss of Polycystin-1 Inhibits Bicc1 Expression during Mouse Development. PLOS ONE 2014, 9: e88816. PMID: 24594709, PMCID: PMC3940423, DOI: 10.1371/journal.pone.0088816.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseasePolycystic kidney diseasePolycystin-1Gene productsKidney developmentKidney diseaseRNA-binding proteinMouse kidney developmentPKD1 gene productEmbryonic day 8.5Human autosomal dominant polycystic kidney diseaseNew molecular linkTemporal expression patternsEarly ureteric budDominant polycystic kidney diseaseC. elegansHuman polycystic kidney diseaseMouse embryogenesisMouse developmentPostnatal kidney developmentMouse homologueCystic phenotypeExpression patternsMolecular linkMultiple species
2008
Fibrocystin/Polyductin Modulates Renal Tubular Formation by Regulating Polycystin-2 Expression and Function
Kim I, Fu Y, Hui K, Moeckel G, Mai W, Li C, Liang D, Zhao P, Ma J, Chen XZ, George AL, Coffey RJ, Feng ZP, Wu G. Fibrocystin/Polyductin Modulates Renal Tubular Formation by Regulating Polycystin-2 Expression and Function. Journal Of The American Society Of Nephrology 2008, 19: 455-468. PMID: 18235088, PMCID: PMC2391052, DOI: 10.1681/asn.2007070770.Peer-Reviewed Original ResearchConceptsFibrocystin/polyductinPC2 channel activityRenal cystic phenotypeGene-targeted mutationPolycystic kidney diseaseCultured renal epithelial cellsAutosomal recessive polycystic kidney diseaseHuman autosomal recessive polycystic kidney diseaseCommon molecular pathwaysEpithelial cellsRecessive polycystic kidney diseaseRenal epithelial cellsAberrant ciliogenesisKidney diseasePolycystin-2Polycystin-2 expressionPrimary ciliaCystic phenotypeSingle mutationMolecular pathwaysGenetic modifiersPhenotypic characteristicsMutationsMolecular interactionsAutosomal dominant polycystic kidney disease