2018
Catalysing water oxidation using nature’s metal
Brudvig G. Catalysing water oxidation using nature’s metal. Nature Catalysis 2018, 1: 10-11. DOI: 10.1038/s41929-017-0013-1.Peer-Reviewed Original Research
2005
Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex
Howard D, Tinoco A, Brudvig G, Vrettos J, Allen B. Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex. Journal Of Chemical Education 2005, 82: 791. DOI: 10.1021/ed082p791.Peer-Reviewed Original ResearchBioinorganic modelsWater oxidationMn4 clusterArtificial water oxidation catalystsBioinorganic model complexesCatalytic oxygen evolutionWater oxidation catalystsPhotosystem IIPhotosynthetic water oxidationUV-visible spectroscopyOxygen-Evolving ComplexDeuterium kinetic isotope effectsPhotosystem II Oxygen Evolving ComplexKinetic isotope effectsBioinorganic chemistryTerpy complexesInorganic synthesisPlace of H2OManganese complexesModel complexesPrimary oxidantManganese clusterOne-electronOxygen evolutionActive site
2004
Structure-based mechanism of photosynthetic water oxidation
McEvoy J, Brudvig G. Structure-based mechanism of photosynthetic water oxidation. Physical Chemistry Chemical Physics 2004, 6: 4754-4763. DOI: 10.1039/b407500e.Peer-Reviewed Original ResearchOxygen-evolving complexO bond-forming stepSubstrate water moleculesX-ray crystal structureBond-forming stepPhotosynthetic water oxidationWater splitting reactionResolution X-ray crystal structureCyanobacterial photosystem IIÅ resolution X-ray crystal structureCP43-Arg357Water oxidationStructure-based mechanismWater moleculesCertain amino acid residuesAmino acid residuesCrystal structureMechanistic functionPhotosystem IIArginine residuesCrystallographic informationLends weightResiduesNucleophilesOxidation
2001
Photosynthetic Water Oxidation in Cytochromeb 559 Mutants Containing a Disrupted Heme-binding Pocket*
Morais F, Kühn K, Stewart D, Barber J, Brudvig G, Nixon P. Photosynthetic Water Oxidation in Cytochromeb 559 Mutants Containing a Disrupted Heme-binding Pocket*. Journal Of Biological Chemistry 2001, 276: 31986-31993. PMID: 11390403, DOI: 10.1074/jbc.m103935200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCarrier ProteinsChlamydomonas reinhardtiiCytochrome b GroupDNA PrimersElectron Spin Resonance SpectroscopyHeme-Binding ProteinsHemeproteinsMutagenesis, Site-DirectedMutationOxidation-ReductionPhotosynthesisPhotosynthetic Reaction Center Complex ProteinsPhotosystem II Protein ComplexWaterConceptsPhotosynthetic oxygen evolutionMethionine mutantsWild typeAlpha subunitLight-saturated ratePhotosystem two complexWild-type levelsHeme of cytochromePhotosynthetic water oxidationHeme-binding pocketOxygen evolutionChloroplast mutantsPSII supercomplexesHistidine axial ligandsChlamydomonas reinhardtiiGlutamine mutantTyrosine mutantsMutantsType levelsRedox roleHemeSubunitsOxygen evolution activityTyrosineComplexesMechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry
Vrettos J, Limburg J, Brudvig G. Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochimica Et Biophysica Acta 2001, 1503: 229-245. PMID: 11115636, DOI: 10.1016/s0005-2728(00)00214-0.Peer-Reviewed Original ResearchMeSH KeywordsCrystallographyElectron TransportHemerythrinHydrogen-Ion ConcentrationKineticsManganeseModels, ChemicalModels, MolecularOrganometallic CompoundsOxidation-ReductionOxygenPhotosynthesisPhotosynthetic Reaction Center Complex ProteinsPhotosystem II Protein ComplexProtonsThylakoidsTyrosineWaterConceptsPhotosynthetic water oxidationWater oxidationOxygen-evolving complexProton-coupled electron transferTetranuclear manganese clusterMu-oxo bridgePhotosystem IIReduction of manganeseOOH speciesWater moleculesElectron transferModel chemistryManganese clusterNucleophilic attackDiferric siteFerric hydroperoxideOxidationD1 polypeptideBiophysical studiesOxyhemerythrinBiophysical resultsStructural modelDioxygenChemistryProtonation
2000
Characterization of the O2-Evolving Reaction Catalyzed by [(terpy)(H2O)MnIII(O)2MnIV(OH2)(terpy)](NO3)3 (terpy = 2,2‘:6,2‘ ‘-Terpyridine)
Limburg J, Vrettos J, Chen H, de Paula J, Crabtree R, Brudvig G. Characterization of the O2-Evolving Reaction Catalyzed by [(terpy)(H2O)MnIII(O)2MnIV(OH2)(terpy)](NO3)3 (terpy = 2,2‘:6,2‘ ‘-Terpyridine). Journal Of The American Chemical Society 2000, 123: 423-430. PMID: 11456544, DOI: 10.1021/ja001090a.Peer-Reviewed Original ResearchKinetic analysis of the O2-forming reaction between [Mn(III)(dpa)2]− (dpa=dipicolinate) and potassium peroxomonosulfate
Limburg J, Crabtree* R, Brudvig* G. Kinetic analysis of the O2-forming reaction between [Mn(III)(dpa)2]− (dpa=dipicolinate) and potassium peroxomonosulfate. Inorganica Chimica Acta 2000, 297: 301-306. DOI: 10.1016/s0020-1693(99)00362-x.Peer-Reviewed Original ResearchO2-evolving complexPotassium peroxomonosulfateO2 evolutionComplexes of formulaO2-evolving reactionsFour-electron oxidationPhotosynthetic water oxidationPhotosystem IITerpy complexesWater oxidationManganese complexesKinetic analysisSide reactionsBond formationMolecular oxygenOxygen atomsReactionComplexesPeroxomonosulfateKey stepOxidationKobsManganeseTerpyridineTerpy
1999
A Functional Model for O-O Bond Formation by the O2-Evolving Complex in Photosystem II
Limburg J, Vrettos J, Liable-Sands L, Rheingold A, Crabtree R, Brudvig G. A Functional Model for O-O Bond Formation by the O2-Evolving Complex in Photosystem II. Science 1999, 283: 1524-1527. PMID: 10066173, DOI: 10.1126/science.283.5407.1524.Peer-Reviewed Original ResearchConceptsMolecular oxygenPhotosystem IIO bond formationPhotosynthetic water oxidationWater oxidationManganese dimerBond formationOxygen atomsActive siteIsotope labelingManganese ionsOxygenPhotosynthesisWaterSodium hypochloriteOxidationIonsFormationAtomsDimersComplexesO2Functional modelConversionHypochloriteA mechanistic and structural model for the formation and reactivity of a MnV[double bond, length half m-dash]O species in photosynthetic water oxidation
Limburg J, Szalai V, Brudvig G. A mechanistic and structural model for the formation and reactivity of a MnV[double bond, length half m-dash]O species in photosynthetic water oxidation. Dalton Transactions 1999, 0: 1353-1362. DOI: 10.1039/a807583b.Peer-Reviewed Original ResearchProtein complex photosystem IIPhotosynthetic water oxidationWater oxidationMn4 clusterModel complexesO bond-forming stepO bond-forming reactionsRedox-active tyrosine residueSubstrate water moleculesBond-forming reactionsO bond formationBond-forming stepHydrogen bond networkTetranuclear Mn clusterElectrophilic oxygen atomHydroxide ligandMnO speciesOrganic oxidationLength halfWater moleculesObserved reactivityBond formationNucleophilic attackOxygen atomsKey intermediate
1983
PROPERTIES OF THE S2 STATE ASSOCIATED WITH O2 EVOLUTION
Brudvig G, Casey J, Sauer K. PROPERTIES OF THE S2 STATE ASSOCIATED WITH O2 EVOLUTION. 1983, 159-164. DOI: 10.1016/b978-0-12-372360-4.50023-7.Peer-Reviewed Original ResearchS2 stateMultiline electron paramagnetic resonance (EPR) signalParamagnetic speciesO2 evolutionOxidation state changesPhotosynthetic water oxidationFinal oxidation productsElectron paramagnetic resonance signalS2 state EPR signalsCharge separation eventsS-state advancementMolecule of O2State EPR signalsParamagnetic resonance signalO2-evolving complexWater oxidationPhotosystem IIUnpaired electronOxidation productsEPR signalHyperfine structureResonance signalsSpinach chloroplastsSpeciesHyperfine lines