Direct Risk Assessment From Myocardial Perfusion Imaging Using Explainable Deep Learning
Singh A, Miller RJH, Otaki Y, Kavanagh P, Hauser MT, Tzolos E, Kwiecinski J, Van Kriekinge S, Wei CC, Sharir T, Einstein AJ, Fish MB, Ruddy TD, Kaufmann PA, Sinusas AJ, Miller EJ, Bateman TM, Dorbala S, Di Carli M, Liang JX, Huang C, Han D, Dey D, Berman DS, Slomka PJ. Direct Risk Assessment From Myocardial Perfusion Imaging Using Explainable Deep Learning. JACC Cardiovascular Imaging 2022, 16: 209-220. PMID: 36274041, PMCID: PMC10980287, DOI: 10.1016/j.jcmg.2022.07.017.Peer-Reviewed Original ResearchConceptsMyocardial perfusion imagingTotal perfusion deficitNonfatal myocardial infarctionMyocardial infarctionPerfusion imagingTomography myocardial perfusion imagingIschemic total perfusion deficitStress total perfusion deficitTesting groupReceiver-operating characteristic curvePatient-level riskPrediction of deathSingle photon emissionLogistic regression modelsCause mortalityPrimary outcomeHighest quartileRisk stratificationAbnormal perfusionNormal perfusionPerfusion deficitsAdverse event predictionPrognostic accuracyHigh riskMyocardial perfusionMachine learning to predict abnormal myocardial perfusion from pre-test features
Miller RJH, Hauser MT, Sharir T, Einstein AJ, Fish MB, Ruddy TD, Kaufmann PA, Sinusas AJ, Miller EJ, Bateman TM, Dorbala S, Di Carli M, Huang C, Liang JX, Han D, Dey D, Berman DS, Slomka PJ. Machine learning to predict abnormal myocardial perfusion from pre-test features. Journal Of Nuclear Cardiology 2022, 29: 2393-2403. PMID: 35672567, PMCID: PMC9588501, DOI: 10.1007/s12350-022-03012-6.Peer-Reviewed Original ResearchConceptsAbnormal myocardial perfusionAbnormal perfusionMyocardial perfusionDiamond-Forrester modelCAD consortiumConsecutive patientsInternational registryPre-test informationSPECT-MPIClinical informationPhysician's decisionPatientsPerfusionTesting populationExpert visual interpretationRegistryPopulationMethodsWePhysicians