2017
Activation of master virulence regulator PhoP in acidic pH requires the Salmonella-specific protein UgtL
Choi J, Groisman EA. Activation of master virulence regulator PhoP in acidic pH requires the Salmonella-specific protein UgtL. Science Signaling 2017, 10 PMID: 28851823, PMCID: PMC5966036, DOI: 10.1126/scisignal.aan6284.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntimicrobial Cationic PeptidesBacterial ProteinsDisease Models, AnimalFemaleGene Expression Regulation, BacterialHydrogen-Ion ConcentrationMagnesiumMembrane ProteinsMiceMice, Inbred BALB CPeptidesPhosphorylationSalmonella InfectionsSalmonella typhimuriumSignal TransductionVirulenceConceptsPhoP activation
2016
Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence
Choi J, Groisman EA. Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence. Molecular Microbiology 2016, 101: 1024-1038. PMID: 27282333, PMCID: PMC5015592, DOI: 10.1111/mmi.13439.Peer-Reviewed Original Research
2013
Signal‐specific temporal response by the Salmonella PhoP/PhoQ regulatory system
Park S, Groisman EA. Signal‐specific temporal response by the Salmonella PhoP/PhoQ regulatory system. Molecular Microbiology 2013, 91: 135-144. PMID: 24256574, PMCID: PMC3890429, DOI: 10.1111/mmi.12449.Peer-Reviewed Original ResearchConceptsTransporter MgtATwo-component systems PhoP/PhoQPhoP-dependent genesAntimicrobial peptide C18G.PhoP/PhoQSalmonella enterica serovar TyphimuriumSensor PhoQEnterica serovar TyphimuriumVirulence functionsRepressing signalsGene setsPhoQMgtAGenesSerovar TyphimuriumElicit expressionPeriplasmPhoPActive formFull transcriptionExpressionPhoQ.TranscriptionCytoplasmicProtein
2004
Transcriptional Control of the Antimicrobial Peptide Resistance ugtL Gene by the Salmonella PhoP and SlyA Regulatory Proteins*
Shi Y, Latifi T, Cromie MJ, Groisman EA. Transcriptional Control of the Antimicrobial Peptide Resistance ugtL Gene by the Salmonella PhoP and SlyA Regulatory Proteins*. Journal Of Biological Chemistry 2004, 279: 38618-38625. PMID: 15208313, DOI: 10.1074/jbc.m406149200.Peer-Reviewed Original ResearchMeSH KeywordsAntimicrobial Cationic PeptidesBacterial ProteinsBase SequenceBeta-GalactosidaseBinding SitesBlotting, SouthernDeoxyribonuclease IGene Expression Regulation, BacterialMagaininsMagnesiumMembrane ProteinsModels, BiologicalMolecular Sequence DataMutationPeptidesPlasmidsPolymyxin BPromoter Regions, GeneticProtein BindingSalmonellaSingle-Strand Specific DNA and RNA EndonucleasesTranscription FactorsTranscription, GeneticTranscriptional ActivationXenopus ProteinsConceptsPhoP proteinSlyA mutantSlyA proteinPhoP/PhoQTranscription start siteAntimicrobial peptidesTwo-component systemMagainin 2Transcriptional activatorAbility of SalmonellaTranscriptional controlStart siteMaster regulatorRegulatory proteinsTranscriptionVirulence attenuationAntimicrobial peptide magainin 2PhoPGenesProteinPromoterMutantsSlyA.PhoQPeptidesPhoP‐regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B
Shi Y, Cromie MJ, Hsu F, Turk J, Groisman EA. PhoP‐regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Molecular Microbiology 2004, 53: 229-241. PMID: 15225317, DOI: 10.1111/j.1365-2958.2004.04107.x.Peer-Reviewed Original Research
1997
Regulation of polymyxin resistance and adaptation to low-Mg2+ environments
Groisman EA, Kayser J, Soncini FC. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. Journal Of Bacteriology 1997, 179: 7040-7045. PMID: 9371451, PMCID: PMC179645, DOI: 10.1128/jb.179.22.7040-7045.1997.Peer-Reviewed Original ResearchConceptsLPS modificationsAntimicrobial proteinsTranscription of PmrAPolymyxin resistanceWild-type organismsTwo-component systemExpression of pmrAAmino acid substitutionsPeptide antibiotic polymyxin BRegulatory proteinsPmrA-PmrBBacterial survivalAcid substitutionsMicromolar Mg2PmrAProteinHuman neutrophilsBacterial bindingGenesLociCationic polypeptidesAntibiotic polymyxin BOverall negative chargeSalmonella typhimuriumPhagocytic cellsThe Genetic Basis of Microbial Resistance to Antimicrobial Peptides
Groisman E, Aspedon A. The Genetic Basis of Microbial Resistance to Antimicrobial Peptides. Methods In Molecular Biology 1997, 78: 205-215. PMID: 9276306, DOI: 10.1385/0-89603-408-9:205.Peer-Reviewed Original ResearchConceptsSmall cationic peptidesAntimicrobial peptidesPathogen Salmonella typhimuriumDivergent organismsMillions of yearsMammalian hostsCationic peptidesGenetic basisAnimal hostsHost defense peptidesDiverse arrayHost tissuesInnate immunityVirulence propertiesDefense peptidesHostChemical barrierSalmonella typhimuriumMicroorganismsMicrobial resistanceS. typhimuriumPeptidesEnteric pathogensAntibiotic propertiesOpportunistic microorganisms
1996
Mg2+ as an Extracellular Signal: Environmental Regulation of Salmonella Virulence
Véscovi E, Soncini F, Groisman E. Mg2+ as an Extracellular Signal: Environmental Regulation of Salmonella Virulence. Cell 1996, 84: 165-174. PMID: 8548821, DOI: 10.1016/s0092-8674(00)81003-x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBacterial ProteinsBase SequenceCationsGene Expression Regulation, BacterialHydrogen-Ion ConcentrationKineticsMagnesiumMolecular Sequence DataMutationPeptidesPhenotypeProtein ConformationSalmonella typhimuriumSensitivity and SpecificitySignal TransductionTranscription FactorsVirulenceConceptsPhoP/PhoQ systemTranscription of PhoPSignal transduction cascadeVirulence regulatory systemGene expression patternsPeriplasmic domainWild-type SalmonellaExtracellular signalsTransduction cascadeSalmonella virulenceExpression patternsFirst messengersPhoPRegulatory systemGenesPhoQSalmonella typhimuriumPhysiological concentrationsDivalent cationsTranscriptionConcentration of Mg2LociMg2DomainVirulence
1994
How bacteria resist killing by host-defense peptides
Groisman E. How bacteria resist killing by host-defense peptides. Trends In Microbiology 1994, 2: 444-449. PMID: 7866702, DOI: 10.1016/0966-842x(94)90802-8.Peer-Reviewed Original ResearchA Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium.
Parra‐Lopez C, Lin R, Aspedon A, Groisman EA. A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium. The EMBO Journal 1994, 13: 3964-3972. PMID: 8076592, PMCID: PMC395316, DOI: 10.1002/j.1460-2075.1994.tb06712.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceBiological TransportCarrier ProteinsCloning, MolecularDrug Resistance, MicrobialMelittenMembrane ProteinsMolecular Sequence DataNADPeptidesPotassiumProtaminesReceptor, trkARecombinant ProteinsRestriction MappingSalmonella typhimuriumSequence Analysis, DNASequence Homology, Amino AcidConceptsE. coli proteinsAntimicrobial peptidesMolecular genetic analysisAntimicrobial peptide protaminePutative transportersTransport of peptidesColi proteinsSingle mutantsSalmonella proteinsSame resistance pathwaysSAP mutantsHost defense moleculesGenetic analysisDefense moleculesLoci participateChannel proteinsExhibit hypersensitivityEfflux proteinsUptake systemResistance pathwaysMutantsEscherichia coliProteinTransport of potassiumHost tissues
1993
Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium.
Parra‐Lopez C, Baer MT, Groisman EA. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. The EMBO Journal 1993, 12: 4053-4062. PMID: 8223423, PMCID: PMC413698, DOI: 10.1002/j.1460-2075.1993.tb06089.x.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid SequenceAnti-Bacterial AgentsATP-Binding Cassette TransportersBase SequenceBiological TransportCloning, MolecularDrug Resistance, MicrobialEnterobacteriaceaeGenes, BacterialMelittenModels, BiologicalMolecular Sequence DataOperonPeptidesProtaminesSalmonella typhimuriumSequence Analysis, DNASequence Homology, Amino AcidConceptsUptake of oligopeptidesSet of genesOpen reading frameMolecular genetic analysisMammalian mdrYeast STE6Wild-type plasmidOperon structurePeriplasmic componentPeptide pheromoneNovel transporterReading frameKb segmentSalmonella typhimuriumGenetic analysisKb mRNASmall cationic peptidesSuccessful pathogenAntimicrobial peptide melittinSequence analysisCassette familyEnteric bacteriaPeptide transportAntimicrobial peptidesCancer cells
1992
Resistance to host antimicrobial peptides is necessary for Salmonella virulence.
Groisman EA, Parra-Lopez C, Salcedo M, Lipps CJ, Heffron F. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 11939-11943. PMID: 1465423, PMCID: PMC50673, DOI: 10.1073/pnas.89.24.11939.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnti-Bacterial AgentsAntimicrobial Cationic PeptidesBiological EvolutionBlood ProteinsChromosome MappingCytoplasmic GranulesDefensinsGenes, BacterialGenotypeGranulocytesHumansIn Vitro TechniquesMagaininsMiceMutagenesisPeptidesProtaminesSalmonella InfectionsSalmonella typhimuriumXenopus ProteinsConceptsDifferent phenotypic classesTransposon insertion mutantsHost defense strategiesSalmonella virulence genesBacterium Salmonella typhimuriumResistance mechanismsAntimicrobial peptidesDefensin NP-1Antimicrobial peptide protamineInsertion mutantsResistance lociHost antimicrobial peptidesSalmonella virulencePhenotypic classesMutantsSuccessful pathogenDefective lipopolysaccharideAntibacterial peptidesVirulence genesPeptide mastoparanCecropin P1Defense strategiesUbiquitous typeVirulence propertiesGenes