2001
Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants
Fleming K, Engelman D. Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 14340-14344. PMID: 11724930, PMCID: PMC64683, DOI: 10.1073/pnas.251367498.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesDimerizationDrug StabilityElectrophoresis, Polyacrylamide GelGenetic VariationGlycophorinsHumansIn Vitro TechniquesMagnetic Resonance SpectroscopyMembrane ProteinsMutagenesis, Site-DirectedPoint MutationProtein FoldingProtein Structure, SecondaryRecombinant Fusion ProteinsThermodynamicsUltracentrifugationConceptsHelix-helix interactionsMembrane proteinsTransmembrane helix-helix interactionsSequence variantsHelical membrane proteinsTransmembrane helix dimerizationProtein-protein interactionsDifferent hydrophobic environmentsAlanine-scanning mutagenesisSedimentation equilibrium analytical ultracentrifugationEquilibrium analytical ultracentrifugationTransmembrane helicesHelix dimerizationGxxxG motifDimer interfaceNMR structureDimer stabilityAnalytical ultracentrifugationHydrophobic environmentProteinMutationsSequence dependenceEnergetic principlesHierarchy of stabilityMutagenesisGenetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne
Leeds J, Boyd D, Huber D, Sonoda G, Luu H, Engelman D, Beckwith J. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library 1 1 Edited by G. von Heijne. Journal Of Molecular Biology 2001, 313: 181-195. PMID: 11601855, DOI: 10.1006/jmbi.2001.5007.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAmino Acid SubstitutionBacteriophage lambdaBase SequenceBinding SitesCell MembraneCloning, MolecularDimerizationDNA-Binding ProteinsEscherichia coliEscherichia coli ProteinsGenes, BacterialGenetic VectorsGenomic LibraryMembrane ProteinsModels, MolecularMolecular Sequence DataProtein BindingProtein Sorting SignalsProtein Structure, QuaternaryProtein Structure, TertiaryProtein SubunitsProtein TransportRecombinant Fusion ProteinsRepressor ProteinsViral ProteinsViral Regulatory and Accessory ProteinsConceptsTransmembrane domainTransmembrane helix-helix associationE. coli inner membraneMembrane protein structuresGenomic DNA fragmentsHelix-helix associationG. von HeijneHelix-helix interactionsSite-directed mutagenesisSixth transmembrane domainTransmembrane helicesRepressor DNAGenetic toolsInner membraneVon HeijneProtein structureDNA fragmentsGenetic selectionNovel sequencesMultimerization motifMotifSequenceHomomultimerizationDomainMutagenesisThe Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions
Senes A, Ubarretxena-Belandia I, Engelman D. The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 9056-9061. PMID: 11481472, PMCID: PMC55372, DOI: 10.1073/pnas.161280798.Peer-Reviewed Original ResearchConceptsMembrane protein structuresMembrane protein foldingTransmembrane helix associationTransmembrane helix interactionsHelix-helix interactionsTransmembrane helicesProtein foldingPacking interfaceHelix associationHelix interactionsProtein structureDeterminants of stabilityCalphaStructural motifsHelixSerineFoldingMotifHydrogen bondsImportant determinantInteractionGlycophorinSpecificityCαDeterminantsPolar residues drive association of polyleucine transmembrane helices
Zhou F, Merianos H, Brunger A, Engelman D. Polar residues drive association of polyleucine transmembrane helices. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 2250-2255. PMID: 11226225, PMCID: PMC30124, DOI: 10.1073/pnas.041593698.Peer-Reviewed Original ResearchConceptsPolar residuesPolyleucine sequenceHelix associationTransmembrane helix associationInterhelical hydrogen bondingTransmembrane protein functionTransmembrane helicesForm homoProtein functionTransmembrane proteinDrive associationMembrane proteinsDetergent micellesAsparagine residuesGeneral structural featuresBiological membranesResiduesOligomerization specificityProteinSequenceHelixStructural flexibilitySuch interactionsStructural featuresHeterooligomers
2000
Interhelical hydrogen bonding drives strong interactions in membrane proteins
Xiao Zhou F, Cocco M, Russ W, Brunger A, Engelman D. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Structural & Molecular Biology 2000, 7: 154-160. PMID: 10655619, DOI: 10.1038/72430.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAsparagineCell MembraneChloramphenicol O-AcetyltransferaseCircular DichroismDetergentsDimerizationDNA-Binding ProteinsElectrophoresis, Polyacrylamide GelFungal ProteinsGlycophorinsHydrogen BondingLeucine ZippersMagnetic Resonance SpectroscopyMembrane ProteinsMicellesMicrococcal NucleaseMolecular Sequence DataPeptidesProtein ConformationProtein KinasesProtein Structure, SecondaryRecombinant ProteinsSaccharomyces cerevisiae ProteinsConceptsMembrane proteinsHelix associationTransmembrane α-helicesIntegral membrane proteinsInterhelical hydrogen bondingModel transmembrane helixTransmembrane helicesMembrane helicesGCN4 leucine zipperLeucine zipperPolar residuesSoluble proteinHydrophobic leucineΑ-helixBiological membranesProteinHelixNon-specific interactionsValine (HAV) sequenceMembraneZipperFoldingMotifAsparagineResidues
1999
Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain 11Edited by G. von Heijne
Fisher L, Engelman D, Sturgis J. Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain 11Edited by G. von Heijne. Journal Of Molecular Biology 1999, 293: 639-651. PMID: 10543956, DOI: 10.1006/jmbi.1999.3126.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceButyratesCircular DichroismDetergentsDimerizationEnergy TransferFluorescent DyesGlycophorinsHumansKineticsMicellesMolecular Sequence DataPeptide FragmentsPhosphorylcholineProtein Structure, SecondaryQuaternary Ammonium CompoundsSodium Dodecyl SulfateSolventsSpectrometry, FluorescenceThermodynamicsConceptsSpecific chemical interactionsFörster resonance energy transferResonance energy transferSodium dodecyl sulfateComplex solventChemical interactionFar-UV circular dichroismCircular dichroismDodecyl sulfateTransmembrane helix associationDetergent micellesHelix associationEnergy transferThermodynamic measurementsHelix formationObserved KdZwitterionic detergentSecondary structureDimerizationG. von HeijneHelix dimerizationOrders of magnitudeDetergentsTransmembrane helicesTransmembrane domain
1997
A Transmembrane Helix Dimer: Structure and Implications
MacKenzie K, Prestegard J, Engelman D. A Transmembrane Helix Dimer: Structure and Implications. Science 1997, 276: 131-133. PMID: 9082985, DOI: 10.1126/science.276.5309.131.Peer-Reviewed Original ResearchConceptsMembrane-spanning alpha helicesSolution nuclear magnetic resonance spectroscopyDimeric transmembrane domainNuclear magnetic resonance spectroscopyTransmembrane helix dimerVan der Waals interactionsDer Waals interactionsAqueous detergent micellesIntermonomer hydrogen bondsTransmembrane helicesTransmembrane domainMagnetic resonance spectroscopyThree-dimensional structureDetergent micellesHelix dimerHydrogen bondsWaals interactionsAlpha-helixResonance spectroscopyGlycophorin ASpecific associationHelixSequence dependenceMicellesSpectroscopy
1996
Mapping the lipid-exposed surfaces of membrane proteins
Arkin I, MacKenzie K, Fisher L, Aimoto S, Engelman D, Smith S. Mapping the lipid-exposed surfaces of membrane proteins. Nature Structural & Molecular Biology 1996, 3: 240-243. PMID: 8605625, DOI: 10.1038/nsb0396-240.Peer-Reviewed Original ResearchConceptsMembrane proteinsLong transmembrane helixLipid-exposed surfaceThree-dimensional foldHigh-resolution structuresRelative rotational orientationTransmembrane helicesTransmembrane segmentsThird cysteineCysteine residuesLipid environmentHelix interfacePentameric complexProteinLipid interfaceStable complexesHelixResiduesUndergoes exchangeSulphydryl groupsPhospholambanComplexesInternal faceCysteineRotational orientation
1995
Structural Model of the Phospholamban Ion Channel Complex in Phospholipid Membranes
Arkin I, Rothman M, Ludlam C, Aimoto S, Engelman D, Rothschild K, Smith S. Structural Model of the Phospholamban Ion Channel Complex in Phospholipid Membranes. Journal Of Molecular Biology 1995, 248: 824-834. PMID: 7752243, DOI: 10.1006/jmbi.1995.0263.Peer-Reviewed Original ResearchConceptsSelective ion conductanceTransmembrane domainAmino acid residuesN-terminal 30 amino acid residuesAcid residuesCircular dichroismPentameric protein complexFull-length proteinC-terminal 22 amino acid residuesPhospholipid membranesIon channel complexTransmembrane helicesProtein complexesPhosphorylation sitesMembrane proteinsIon conductanceCarboxy terminusHelix bundleIon poreReticulum membraneInhibitory complexLong helixPentameric complexSecondary structureProteinHelix-helix interactions inside membranes
Engelman D, Adair B, Brunger A, Hunt J, Kahn T, Lemmon M, MacKenzie K, Treutlein H. Helix-helix interactions inside membranes. Molecular And Cell Biology Updates 1995, 297-310. DOI: 10.1007/978-3-0348-9057-1_21.Peer-Reviewed Original Research
1992
Helix-helix interactions inside lipid bilayers
Lemmon M, Engelman D. Helix-helix interactions inside lipid bilayers. Current Opinion In Structural Biology 1992, 2: 511-518. PMCID: PMC7133266, DOI: 10.1016/0959-440x(92)90080-q.Peer-Reviewed Original ResearchTransmembrane α-helicesHelix-helix interactionsΑ-helixSingle transmembrane α-helixMechanism of transmembraneIntegral membrane proteinsNumber of proteinsMembrane-bound receptorsTransmembrane helicesInterhelical salt bridgesMembrane proteinsSoluble proteinSuch oligomerizationEndoplasmic reticulumHydrophobic anchorSuch helicesProteinLipid bilayersSalt bridgePacking interactionsOligomerizationSpecific interactionsCrystallographic studiesHelixGolgiBacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment.
Kahn T, Engelman D. Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment. Biochemistry 1992, 31: 6144-51. PMID: 1627558, DOI: 10.1021/bi00141a027.Peer-Reviewed Original ResearchConceptsStable transmembrane helixSecond helical segmentX-ray diffractionCovalent connectionAbsorption spectroscopyTwo-dimensional crystalsIndependent folding domainsBacteriorhodopsinHelical segmentsNative structureHelixSpectroscopyPeptidesDiffractionTransmembrane helicesMoleculesCrystalsFragmentsMaterialsStructureIntramembrane Helix-Helix Association in Oligomerization and Transmembrane Signaling
Bormann B, Engelman D. Intramembrane Helix-Helix Association in Oligomerization and Transmembrane Signaling. Annual Review Of Biophysics 1992, 21: 223-242. PMID: 1326354, DOI: 10.1146/annurev.bb.21.060192.001255.Peer-Reviewed Original ResearchConceptsProtein foldingTransmembrane regionReceptor proteinClose contact sitesSignal transductionQuaternary structureReceptor moleculesConformational changesHelical transmembrane regionsAllosteric conformational changeHelix-helix associationConformational change modelTertiary/quaternary structureTransmembrane helicesTransmembrane domainMechanism of insertionCytoplasmic domainTransmembrane signalingContact sitesPrimary structureSecondary structureProteinOligomerizationFoldingProteolytic fragmentsDimerization of Glycophorin a Transmembrane Helices: Mutagenesis and Modeling
Engelman D, Adair B, Brünger A, Flanagan J, Lemmon M, Treutlein H, Zhang J. Dimerization of Glycophorin a Transmembrane Helices: Mutagenesis and Modeling. Jerusalem Symposia 1992, 25: 115-125. DOI: 10.1007/978-94-011-2718-9_11.Peer-Reviewed Original ResearchTransmembrane domainSingle transmembrane domainSite-specific mutagenesisGpA dimerTransmembrane helicesDeletion mutagenesisTransmembrane portionCarboxy terminusDimer interfaceHanded supercoilMutagenesisChimera formLipid bilayersGlycophorin AStaphylococcal nucleaseHuman erythrocyte sialoglycoproteinSDS-PAGEErythrocyte sialoglycoproteinDimerizationClose associationDomainDimersSupercoilsNucleaseTerminus
1988
Bacteriorhodopsin in and out of Shape: Experimental Evidence in Favor of a Two-Stage Mechanism for Integral Membrane Protein Folding
Popot J, Engelman D. Bacteriorhodopsin in and out of Shape: Experimental Evidence in Favor of a Two-Stage Mechanism for Integral Membrane Protein Folding. Jerusalem Symposia 1988, 21: 381-398. DOI: 10.1007/978-94-009-3075-9_25.Peer-Reviewed Original ResearchIntegral membrane proteinsMembrane proteinsHelical integral membrane proteinsIntegral membrane protein foldingIntegral membrane protein bacteriorhodopsinMembrane protein foldingTransmembrane α-helicesMembrane protein bacteriorhodopsinTransmembrane helicesProtein foldingRenaturation experimentsVesicle fusionExtensive rearrangementNative proteinPolypeptide chainΑ-helixSequence segmentsLipid vesiclesProtein bacteriorhodopsinProteolytic fragmentsProteinFoldingHelixLipid phaseBacteriorhodopsin
1987
Refolding of bacteriorhodopsin in lipid bilayers A thermodynamically controlled two-stage process
Popot J, Gerchman S, Engelman D. Refolding of bacteriorhodopsin in lipid bilayers A thermodynamically controlled two-stage process. Journal Of Molecular Biology 1987, 198: 655-676. PMID: 3430624, DOI: 10.1016/0022-2836(87)90208-7.Peer-Reviewed Original ResearchConceptsLipid vesiclesAbsence of retinalAlpha-helical structureStable transmembrane helixPurple membrane latticeTransmembrane helicesSmall lipid vesiclesCircular dichroism spectraMembrane proteinsMixture of monomersFree energy minimumDodecyl sulfate solutionVesicle fusionRenatured moleculesSame absorption spectrumCorrect refoldingMajor rearrangementsStructure of bacteriorhodopsinTertiary structureMembrane latticeAbsorption spectroscopyNeutron crystallographyFolding mechanismPartial dehydration processLipid bilayers