2001
The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions
Senes A, Ubarretxena-Belandia I, Engelman D. The Cα—H⋅⋅⋅O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 9056-9061. PMID: 11481472, PMCID: PMC55372, DOI: 10.1073/pnas.161280798.Peer-Reviewed Original ResearchConceptsMembrane protein structuresMembrane protein foldingTransmembrane helix associationTransmembrane helix interactionsHelix-helix interactionsTransmembrane helicesProtein foldingPacking interfaceHelix associationHelix interactionsProtein structureDeterminants of stabilityCalphaStructural motifsHelixSerineFoldingMotifHydrogen bondsImportant determinantInteractionGlycophorinSpecificityCαDeterminants
2000
HELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION
Popot J, Engelman D. HELICAL MEMBRANE PROTEIN FOLDING, STABILITY, AND EVOLUTION. Annual Review Of Biochemistry 2000, 69: 881-922. PMID: 10966478, DOI: 10.1146/annurev.biochem.69.1.881.Peer-Reviewed Original ResearchDesign of single-layer β-sheets without a hydrophobic core
Koide S, Huang X, Link K, Koide A, Bu Z, Engelman D. Design of single-layer β-sheets without a hydrophobic core. Nature 2000, 403: 456-460. PMID: 10667801, DOI: 10.1038/35000255.Peer-Reviewed Original ResearchConceptsSingle-layer β-sheetΒ-sheetHydrophobic coreΒ-sheet segmentsProtein foldingHydrogen-deuterium exchangeOuter surface protein AΒ-sheet structureChemical denaturationSmall-angle X-rayProtein AFoldingMain thermodynamic driving forceSurface protein ABorrelia burgdorferiNuclear magnetic resonanceThermodynamic driving forceMisfoldingNonpolar moietiesHydrophobic effectSolvent resultsProteinAdjacent unitsDenaturationVariants
1997
A Biophysical Study of Integral Membrane Protein Folding †
Hunt J, Earnest T, Bousché O, Kalghatgi K, Reilly K, Horváth C, Rothschild K, Engelman D. A Biophysical Study of Integral Membrane Protein Folding †. Biochemistry 1997, 36: 15156-15176. PMID: 9398244, DOI: 10.1021/bi970146j.Peer-Reviewed Original ResearchConceptsAlpha-helical integral membrane proteinsIntegral membrane proteinsMembrane proteinsIntegral membrane protein foldingMembrane protein foldingNon-native conformationsStable secondary structureCellular chaperonesBiophysical dissectionBeta-sheet structureProtein foldingIndividual polypeptidesBiophysical studiesStructure of bacteriorhodopsinTertiary structureSecondary structureReconstitution protocolsG helicesPolypeptideF helixProteinPhospholipid vesiclesHelixFoldingBacteriorhodopsin
1994
Specificity and promiscuity in membrane helix interactions
Lemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. Quarterly Reviews Of Biophysics 1994, 27: 157-218. PMID: 7984776, DOI: 10.1017/s0033583500004522.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsTransmembrane α-helicesMembrane proteinsΑ-helixMembrane protein foldingMembrane-spanning portionTransmembrane helix associationHelix-helix interactionsParticular helicesProtein foldingHelix associationHelix interactionsProsthetic groupLipid bilayersCharge-charge interactionsStereochemical fitFoldingProteinAccessible statesSpecificityOligomerizationInteractionPromiscuityHelixAssembly
1992
Intramembrane Helix-Helix Association in Oligomerization and Transmembrane Signaling
Bormann B, Engelman D. Intramembrane Helix-Helix Association in Oligomerization and Transmembrane Signaling. Annual Review Of Biophysics 1992, 21: 223-242. PMID: 1326354, DOI: 10.1146/annurev.bb.21.060192.001255.Peer-Reviewed Original ResearchConceptsProtein foldingTransmembrane regionReceptor proteinClose contact sitesSignal transductionQuaternary structureReceptor moleculesConformational changesHelical transmembrane regionsAllosteric conformational changeHelix-helix associationConformational change modelTertiary/quaternary structureTransmembrane helicesTransmembrane domainMechanism of insertionCytoplasmic domainTransmembrane signalingContact sitesPrimary structureSecondary structureProteinOligomerizationFoldingProteolytic fragments
1990
Membrane protein folding and oligomerization: the two-stage model.
Popot J, Engelman D. Membrane protein folding and oligomerization: the two-stage model. Biochemistry 1990, 29: 4031-7. PMID: 1694455, DOI: 10.1021/bi00469a001.Peer-Reviewed Original ResearchConceptsMembrane protein foldingIntegral membrane proteinsMembrane proteinsProtein foldingMembrane protein subunitsTransmembrane segmentsTransmembrane structureSequence dataProtein subunitsVariety of functionsAqueous channelsLipid bilayersFoldingProteinSubunitsOligomerizationAssemblyFragmentsBilayersChapter 6 Bacteriorhodopsin Folding in Membranes: A Two-Stage Process
Engelman D, Adair B, Hunt J, Kahn T, Popot J. Chapter 6 Bacteriorhodopsin Folding in Membranes: A Two-Stage Process. Current Topics In Membranes 1990, 36: 71-78. DOI: 10.1016/s0070-2161(08)60168-9.Peer-Reviewed Original Research
1988
Bacteriorhodopsin in and out of Shape: Experimental Evidence in Favor of a Two-Stage Mechanism for Integral Membrane Protein Folding
Popot J, Engelman D. Bacteriorhodopsin in and out of Shape: Experimental Evidence in Favor of a Two-Stage Mechanism for Integral Membrane Protein Folding. Jerusalem Symposia 1988, 21: 381-398. DOI: 10.1007/978-94-009-3075-9_25.Peer-Reviewed Original ResearchIntegral membrane proteinsMembrane proteinsHelical integral membrane proteinsIntegral membrane protein foldingIntegral membrane protein bacteriorhodopsinMembrane protein foldingTransmembrane α-helicesMembrane protein bacteriorhodopsinTransmembrane helicesProtein foldingRenaturation experimentsVesicle fusionExtensive rearrangementNative proteinPolypeptide chainΑ-helixSequence segmentsLipid vesiclesProtein bacteriorhodopsinProteolytic fragmentsProteinFoldingHelixLipid phaseBacteriorhodopsin