2011
First Step in Folding of Nonconstitutive Membrane Proteins: Spontaneous Insertion of a Polypeptide into a Lipid Bilayer and Formation of Helical Structure
Karabadzhak A, Weerakkody D, Thakur M, Anderson M, Engelman D, Andreev O, Markin V, Reshetnyak Y. First Step in Folding of Nonconstitutive Membrane Proteins: Spontaneous Insertion of a Polypeptide into a Lipid Bilayer and Formation of Helical Structure. Biophysical Journal 2011, 100: 346a. DOI: 10.1016/j.bpj.2010.12.2088.Peer-Reviewed Original Research
2009
Translocating cell‐impermeable molecules through the plasma membrane of cancer cells
THEVENIN D, An M, Andreev O, Reshetnyak Y, Engelman D. Translocating cell‐impermeable molecules through the plasma membrane of cancer cells. The FASEB Journal 2009, 23: 796.7-796.7. DOI: 10.1096/fasebj.23.1_supplement.796.7.Peer-Reviewed Original ResearchCell-impermeable moleculesCell-impermeable cargo moleculesDrug designLipid bilayersHost-guest modelMembrane-impermeable cargoNovel delivery systemPhysiological pHTraverse membranesModel cargoCancer cell membraneDelivery systemCargo moleculesMoleculesCargo propertiesBilayersPeptidesMembraneSingle amino acidPropertiesC-terminusAmino acidsPotential therapeutic agentTherapeutic agentsAcidity
2001
Helical membrane proteins: diversity of functions in the context of simple architecture
Ubarretxena-Belandia I, Engelman D. Helical membrane proteins: diversity of functions in the context of simple architecture. Current Opinion In Structural Biology 2001, 11: 370-376. PMID: 11406389, DOI: 10.1016/s0959-440x(00)00217-7.Peer-Reviewed Original ResearchConceptsHelical membrane proteinsGenome-wide scaleAlpha-helical conformationDiversity of functionsIdentification of motifsMembrane proteinsProtein regionsHelix interactionsPolar sidechainsStructural roleLipid bilayersProteinDiversityMotifUse of deviationsConformationSidechainsFunctionFurther investigationBilayersSequestrationIdentification
2000
Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations11Edited by G. Von Heijne
Petrache H, Grossfield A, MacKenzie K, Engelman D, Woolf T. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations11Edited by G. Von Heijne. Journal Of Molecular Biology 2000, 302: 727-746. PMID: 10986130, DOI: 10.1006/jmbi.2000.4072.Peer-Reviewed Original ResearchMeSH Keywords1,2-DipalmitoylphosphatidylcholineAlgorithmsAmino Acid MotifsAmino Acid SequenceBinding SitesComputer SimulationDimerizationDimyristoylphosphatidylcholineGlycophorinsLipid BilayersModels, MolecularMolecular Sequence DataNuclear Magnetic Resonance, BiomolecularPeptide FragmentsPhosphatidylcholinesProtein BindingProtein Structure, SecondaryProtein Structure, TertiaryThermodynamicsConceptsMonomer formLipid bilayersLipid chain lengthUnfavorable electrostatic repulsionLipid typeMolecular dynamics simulationsExplicit lipid bilayerElectrostatic repulsionMonomeric helicesLipid-lipid interactionsInteraction enthalpiesChain lengthDimer structureEnergetic propertiesCHARMM potentialInteraction energyAccessible volumeDynamics simulationsLipid propertiesUnsaturated lipidsEnthalpy calculationsLipid environmentBilayer thicknessAcyl chainsThermodynamic treatment
1999
The Length of the Flexible SNAREpin Juxtamembrane Region Is a Critical Determinant of SNARE-Dependent Fusion
McNew J, Weber T, Engelman D, Söllner T, Rothman J. The Length of the Flexible SNAREpin Juxtamembrane Region Is a Critical Determinant of SNARE-Dependent Fusion. Molecular Cell 1999, 4: 415-421. PMID: 10518222, DOI: 10.1016/s1097-2765(00)80343-3.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAntigens, SurfaceCarrier ProteinsMembrane FusionMembrane ProteinsMolecular Sequence DataMutagenesis, Site-DirectedNerve Tissue ProteinsPliabilityProlineProtein Structure, SecondaryRecombinant ProteinsR-SNARE ProteinsSNARE ProteinsSynaptosomal-Associated Protein 25Syntaxin 1Vesicular Transport ProteinsConceptsJuxtamembrane regionMembrane fusionSNARE-dependent membrane fusionSNARE-dependent fusionHelix-breaking proline residueSNARE proteinsTransmembrane domainSyntaxin 1ACoil domainProline residuesFlexible linkerLipid bilayersCritical determinantFusion efficiencyFusionVAMPDomainProteinRate of fusionSnareVesiclesResiduesLinkerSame changesRegion
1997
Spontaneous, pH-Dependent Membrane Insertion of a Transbilayer α-Helix †
Hunt J, Rath P, Rothschild K, Engelman D. Spontaneous, pH-Dependent Membrane Insertion of a Transbilayer α-Helix †. Biochemistry 1997, 36: 15177-15192. PMID: 9398245, DOI: 10.1021/bi970147b.Peer-Reviewed Original ResearchConceptsLipid bilayersIntegral membrane protein bacteriorhodopsinMembrane-spanning regionIntegral membrane proteinsPH-dependent membrane insertionAspartic acid residuesMembrane protein bacteriorhodopsinInsertion reactionMembrane insertionMembrane proteinsAqueous solutionHydrophobic sequenceAqueous bufferPoor solubilityAlpha-helixAcid residuesSignificant solubilityC-helixSpectroscopic assaysΑ-helixSecondary structureProtein bacteriorhodopsinNeutral pHPeptide associatesBilayers
1996
Crossing the Hydrophobic Barrier--Insertion of Membrane Proteins
Engelman D. Crossing the Hydrophobic Barrier--Insertion of Membrane Proteins. Science 1996, 274: 1850-1851. PMID: 8984645, DOI: 10.1126/science.274.5294.1850.Peer-Reviewed Original ResearchFourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban
Ludlam C, Arkin I, Liu X, Rothman M, Rath P, Aimoto S, Smith S, Engelman D, Rothschild K. Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban. Biophysical Journal 1996, 70: 1728-1736. PMID: 8785331, PMCID: PMC1225141, DOI: 10.1016/s0006-3495(96)79735-7.Peer-Reviewed Original ResearchConceptsSite-directed isotope labelingLocal secondary structureIsotope labelingSecondary structureSelective ion channelsTotal reflection Fourier transformPeptide amide groupsAmide IReflection Fourier transformDeuterium/hydrogen exchangeTransmembrane domainMembrane domainsMembrane proteinsTransmembrane orientationAmino acid fragmentSpectroscopic characterizationIon channelsHydrophobic regionAmide carbonylProtein backboneCardiac muscle cellsAmide groupLipid bilayersATPase activityFourier transform
1995
Small angle x-ray scattering studies of magnetically oriented lipid bilayers
Hare B, Prestegard J, Engelman D. Small angle x-ray scattering studies of magnetically oriented lipid bilayers. Biophysical Journal 1995, 69: 1891-1896. PMID: 8580332, PMCID: PMC1236422, DOI: 10.1016/s0006-3495(95)80059-7.Peer-Reviewed Original ResearchConceptsNuclear magnetic resonanceLipid bilayersMembrane-associated moleculesBilayer thicknessLipid particlesSmall-angle X-rayX-ray scatteringAngle X-rayNMR dataDLPC vesiclesOrientational parametersX-ray solutionMolar ratioPhospholipid moleculesStructural studiesOrientational energyPhospholipid bilayersAnalogue 3MoleculesBilayersInterparticle spacingX-rayMagnetic resonanceParticlesComplexes
1994
Specificity and promiscuity in membrane helix interactions
Lemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. FEBS Letters 1994, 346: 17-20. PMID: 8206151, DOI: 10.1016/0014-5793(94)00467-6.Peer-Reviewed Original ResearchGlycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study.
Adair B, Engelman D. Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry 1994, 33: 5539-44. PMID: 8180176, DOI: 10.1021/bi00184a024.Peer-Reviewed Original ResearchSpecificity and promiscuity in membrane helix interactions
Lemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. Quarterly Reviews Of Biophysics 1994, 27: 157-218. PMID: 7984776, DOI: 10.1017/s0033583500004522.Peer-Reviewed Original ResearchConceptsIntegral membrane proteinsTransmembrane α-helicesMembrane proteinsΑ-helixMembrane protein foldingMembrane-spanning portionTransmembrane helix associationHelix-helix interactionsParticular helicesProtein foldingHelix associationHelix interactionsProsthetic groupLipid bilayersCharge-charge interactionsStereochemical fitFoldingProteinAccessible statesSpecificityOligomerizationInteractionPromiscuityHelixAssemblyA dimerization motif for transmembrane α–helices
Lemmon M, Treutlein H, Adams P, Brünger A, Engelman D. A dimerization motif for transmembrane α–helices. Nature Structural & Molecular Biology 1994, 1: 157-163. PMID: 7656033, DOI: 10.1038/nsb0394-157.Peer-Reviewed Original ResearchConceptsTransmembrane α-helicesHydrophobic transmembrane α-helicesSpecific helix-helix interactionsΑ-helixIntegral membrane proteinsHelix-helix interactionsHelix-helix interfaceDimerization motifSpecific dimerizationMembrane proteinsHelix associationFunctional analysisAmino acidsSuch motifsLipid bilayersMotifParticular motifsFoldingDimerizationSuch interactionsComplex membranesProteinOligomerizationVariety of systemsInteraction
1992
Helix-helix interactions inside lipid bilayers
Lemmon M, Engelman D. Helix-helix interactions inside lipid bilayers. Current Opinion In Structural Biology 1992, 2: 511-518. PMCID: PMC7133266, DOI: 10.1016/0959-440x(92)90080-q.Peer-Reviewed Original ResearchTransmembrane α-helicesHelix-helix interactionsΑ-helixSingle transmembrane α-helixMechanism of transmembraneIntegral membrane proteinsNumber of proteinsMembrane-bound receptorsTransmembrane helicesInterhelical salt bridgesMembrane proteinsSoluble proteinSuch oligomerizationEndoplasmic reticulumHydrophobic anchorSuch helicesProteinLipid bilayersSalt bridgePacking interactionsOligomerizationSpecific interactionsCrystallographic studiesHelixGolgiDimerization of Glycophorin a Transmembrane Helices: Mutagenesis and Modeling
Engelman D, Adair B, Brünger A, Flanagan J, Lemmon M, Treutlein H, Zhang J. Dimerization of Glycophorin a Transmembrane Helices: Mutagenesis and Modeling. Jerusalem Symposia 1992, 25: 115-125. DOI: 10.1007/978-94-011-2718-9_11.Peer-Reviewed Original ResearchTransmembrane domainSingle transmembrane domainSite-specific mutagenesisGpA dimerTransmembrane helicesDeletion mutagenesisTransmembrane portionCarboxy terminusDimer interfaceHanded supercoilMutagenesisChimera formLipid bilayersGlycophorin AStaphylococcal nucleaseHuman erythrocyte sialoglycoproteinSDS-PAGEErythrocyte sialoglycoproteinDimerizationClose associationDomainDimersSupercoilsNucleaseTerminus
1990
Membrane protein folding and oligomerization: the two-stage model.
Popot J, Engelman D. Membrane protein folding and oligomerization: the two-stage model. Biochemistry 1990, 29: 4031-7. PMID: 1694455, DOI: 10.1021/bi00469a001.Peer-Reviewed Original ResearchConceptsMembrane protein foldingIntegral membrane proteinsMembrane proteinsProtein foldingMembrane protein subunitsTransmembrane segmentsTransmembrane structureSequence dataProtein subunitsVariety of functionsAqueous channelsLipid bilayersFoldingProteinSubunitsOligomerizationAssemblyFragmentsBilayers
1987
Refolding of bacteriorhodopsin in lipid bilayers A thermodynamically controlled two-stage process
Popot J, Gerchman S, Engelman D. Refolding of bacteriorhodopsin in lipid bilayers A thermodynamically controlled two-stage process. Journal Of Molecular Biology 1987, 198: 655-676. PMID: 3430624, DOI: 10.1016/0022-2836(87)90208-7.Peer-Reviewed Original ResearchConceptsLipid vesiclesAbsence of retinalAlpha-helical structureStable transmembrane helixPurple membrane latticeTransmembrane helicesSmall lipid vesiclesCircular dichroism spectraMembrane proteinsMixture of monomersFree energy minimumDodecyl sulfate solutionVesicle fusionRenatured moleculesSame absorption spectrumCorrect refoldingMajor rearrangementsStructure of bacteriorhodopsinTertiary structureMembrane latticeAbsorption spectroscopyNeutron crystallographyFolding mechanismPartial dehydration processLipid bilayersFolding of Integral Membrane Proteins: Renaturation Experiments with Bacteriorhodopsin Support a Two-Stage Mechanism
Popot J, Engelman D. Folding of Integral Membrane Proteins: Renaturation Experiments with Bacteriorhodopsin Support a Two-Stage Mechanism. 1987, 345-346. DOI: 10.1007/978-1-4613-1941-2_48.Peer-Reviewed Original Research
1986
On the Folding of Bacteriorhodopsin
Engelman D. On the Folding of Bacteriorhodopsin. 1986, 167-172. DOI: 10.1007/978-1-4684-8410-6_18.Peer-Reviewed Original Research