2001
Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants
Fleming K, Engelman D. Specificity in transmembrane helix–helix interactions can define a hierarchy of stability for sequence variants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 14340-14344. PMID: 11724930, PMCID: PMC64683, DOI: 10.1073/pnas.251367498.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesDimerizationDrug StabilityElectrophoresis, Polyacrylamide GelGenetic VariationGlycophorinsHumansIn Vitro TechniquesMagnetic Resonance SpectroscopyMembrane ProteinsMutagenesis, Site-DirectedPoint MutationProtein FoldingProtein Structure, SecondaryRecombinant Fusion ProteinsThermodynamicsUltracentrifugationConceptsHelix-helix interactionsMembrane proteinsTransmembrane helix-helix interactionsSequence variantsHelical membrane proteinsTransmembrane helix dimerizationProtein-protein interactionsDifferent hydrophobic environmentsAlanine-scanning mutagenesisSedimentation equilibrium analytical ultracentrifugationEquilibrium analytical ultracentrifugationTransmembrane helicesHelix dimerizationGxxxG motifDimer interfaceNMR structureDimer stabilityAnalytical ultracentrifugationHydrophobic environmentProteinMutationsSequence dependenceEnergetic principlesHierarchy of stabilityMutagenesis
1998
Structure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization
MacKenzie K, Engelman D. Structure-based prediction of the stability of transmembrane helix–helix interactions: The sequence dependence of glycophorin A dimerization. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 3583-3590. PMID: 9520409, PMCID: PMC19879, DOI: 10.1073/pnas.95.7.3583.Peer-Reviewed Original ResearchConceptsHelix-helix interactionsTransmembrane helix-helix associationTransmembrane helix-helix interactionsHelix-helix associationSingle-point mutantsStructure-based predictionTransmembrane domainMembrane proteinsDimer interfaceDimerization propensitySide-chain hydrophobicityDimer stabilityPoint mutationsSteric clashesMultiple mutationsMutationsSequence dependenceCompensatory effectFavorable van der Waals interactionsMutantsFoldingProteinInteractionDimerizationGlycophorin
1996
Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon—carbon couplings and 13C chemical shifts
MacKenzie K, Prestegard J, Engelman D. Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon—carbon couplings and 13C chemical shifts. Journal Of Biomolecular NMR 1996, 7: 256-260. PMID: 8785502, DOI: 10.1007/bf00202043.Peer-Reviewed Original ResearchConceptsChemical shiftsPeptide dimersΑ-carbonSide chainsSide-chain rotamer populationsCarbon-carbon couplingLeucine side chainsThree-bond J couplingsNMR pulse sequencesΔ-methyl groupsRotamer populationsMethyl carbonFast exchangeSide-chain rotamersJ-couplingsTransmembrane peptidesDimer interfaceRotameric statesProtein systemsRotamersShift distributionGlycophorin A.DimersChainMethyl
1992
Dimerization of Glycophorin a Transmembrane Helices: Mutagenesis and Modeling
Engelman D, Adair B, Brünger A, Flanagan J, Lemmon M, Treutlein H, Zhang J. Dimerization of Glycophorin a Transmembrane Helices: Mutagenesis and Modeling. Jerusalem Symposia 1992, 25: 115-125. DOI: 10.1007/978-94-011-2718-9_11.Peer-Reviewed Original ResearchTransmembrane domainSingle transmembrane domainSite-specific mutagenesisGpA dimerTransmembrane helicesDeletion mutagenesisTransmembrane portionCarboxy terminusDimer interfaceHanded supercoilMutagenesisChimera formLipid bilayersGlycophorin AStaphylococcal nucleaseHuman erythrocyte sialoglycoproteinSDS-PAGEErythrocyte sialoglycoproteinDimerizationClose associationDomainDimersSupercoilsNucleaseTerminus