2023
Split aminoacyl-tRNA synthetases for proximity-induced stop codon suppression
Jiang H, Ambrose N, Chung C, Wang Y, Söll D, Tharp J. Split aminoacyl-tRNA synthetases for proximity-induced stop codon suppression. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2219758120. PMID: 36787361, PMCID: PMC9974479, DOI: 10.1073/pnas.2219758120.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetasesCodon suppressionStop codon suppressionGene expressionOrthogonal aminoacyl-tRNA synthetasesRelevant protein-protein interactionsSynthetic biology toolsSmall molecule rapamycinControl gene expressionProtein-protein interactionsLevel of transcriptionAbscisic acidDimerization domainMammalian cellsBiology toolsGene translationTranslational levelMolecular switchStop codonHuman cellsMolecular inputsUseful biotechnologySynthetasesExpressionTherapeutic applications
2022
Measuring the tolerance of the genetic code to altered codon size
DeBenedictis EA, Söll D, Esvelt KM. Measuring the tolerance of the genetic code to altered codon size. ELife 2022, 11: e76941. PMID: 35293861, PMCID: PMC9094753, DOI: 10.7554/elife.76941.Peer-Reviewed Original ResearchConceptsFour-base codonsGenetic codeTRNA mutationsAminoacyl-tRNA synthetasesQuadruplet codonsSingle amino acidCodon translationTriplet codonsTRNA synthetasesSynthetic biologistsCodonTRNAAmino acidsChemical alphabetsMutationsMass spectrometrySynthetasesAnticodonToleranceSynthetic systemsBiologistsTranslationEscherichiaNascent
2014
Exploring the Substrate Range of Wild‐Type Aminoacyl‐tRNA Synthetases
Fan C, Ho JM, Chirathivat N, Söll D, Wang Y. Exploring the Substrate Range of Wild‐Type Aminoacyl‐tRNA Synthetases. ChemBioChem 2014, 15: 1805-1809. PMID: 24890918, PMCID: PMC4133344, DOI: 10.1002/cbic.201402083.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetasesSubstrate rangeDifferent amino acid sitesAmino acidsE. coli tryptophanyl-tRNA synthetaseE. coli aminoacyl-tRNA synthetasesAmino acid sitesCanonical amino acidsNonstandard amino acidsTyrosyl-tRNA synthetaseTryptophanyl-tRNA synthetaseAnticodon sequenceTRNA synthetasesSynthetasesSynthetaseSequenceAnticodonNSAAsTrpRSProteinAminoacylAcid
2007
Features of Aminoacyl‐tRNA Synthesis Unique to Archaea
Polycarpo C, Sheppard K, Randau L, Ambrogelly A, Cardoso A, Fukai S, Herring S, Hohn M, Nakamura Y, Oshikane H, Palioura S, Salazar J, Yuan J, Nureki O, Söll D. Features of Aminoacyl‐tRNA Synthesis Unique to Archaea. 2007, 198-208. DOI: 10.1128/9781555815516.ch9.Peer-Reviewed Original ResearchAminoacyl-tRNA synthetasesAmino acidsCognate tRNA speciesCorrect amino acidDomains of lifeAminoacyl-tRNA synthetaseIntron-exon junctionsCorresponding tRNAsNanoarchaeum equitansMethylated thiolsM. jannaschiiMature tRNATRNA speciesGenomic studiesAncient familyBulge motifCysteine synthesisMethanogenic archaeaArchaeaBiosynthetic routeAa-tRNATRNATwo-step pathwayCys-tRNACysSynthetases
2004
Cys-tRNACys formation and cysteine biosynthesis in methanogenic archaea: two faces of the same problem?
Ambrogelly A, Kamtekar S, Sauerwald A, Ruan B, Tumbula-Hansen D, Kennedy D, Ahel I, Söll D. Cys-tRNACys formation and cysteine biosynthesis in methanogenic archaea: two faces of the same problem? Cellular And Molecular Life Sciences 2004, 61: 2437-2445. PMID: 15526152, DOI: 10.1007/s00018-004-4194-9.Peer-Reviewed Original ResearchConceptsMethanogenic archaeaCysteine biosynthesisCellular translation machineryAminoacyl-tRNA synthesisCanonical cysteinyl-tRNA synthetaseAminoacyl-tRNA synthetasesCysteinyl-tRNA synthetaseRecognizable genesTranslation machineryGenome sequenceArchaeaBiosynthesisEssential componentSynthetasesTRNARibosomesGenesMachineryOrganismsSynthetasePossible linkSequenceFormation
2002
tRNA‐dependent amino acid discrimination by yeast seryl‐tRNA synthetase
Gruic‐Sovulj I, Landeka I, Söll D, Weygand‐Durasevic I. tRNA‐dependent amino acid discrimination by yeast seryl‐tRNA synthetase. The FEBS Journal 2002, 269: 5271-5279. PMID: 12392560, DOI: 10.1046/j.1432-1033.2002.03241.x.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast seryl-tRNA synthetaseCognate tRNA moleculesAmino acid discriminationAminoacyl-tRNA synthetasesAmino acid substratesSimilar amino acidsAmino acid serineGenetic codeEnzyme active siteTRNA moleculesActive siteYeast SerRSConformational changesAcid substratesAmino acidsSerineSynthetaseStoichiometric analysisDifferent affinitiesEnzymeAccurate translationTRNASerSynthetasesSaccharomyces
2001
A Single Amidotransferase Forms Asparaginyl-tRNA and Glutaminyl-tRNA in Chlamydia trachomatis *
Raczniak G, Becker H, Min B, Söll D. A Single Amidotransferase Forms Asparaginyl-tRNA and Glutaminyl-tRNA in Chlamydia trachomatis *. Journal Of Biological Chemistry 2001, 276: 45862-45867. PMID: 11585842, DOI: 10.1074/jbc.m109494200.Peer-Reviewed Original ResearchConceptsAsn-tRNAGln-tRNAAminoacyl-tRNAOperon-like arrangementAccurate protein synthesisGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseAminoacyl-tRNA synthetasesAsparaginyl-tRNA synthetaseAspartyl-tRNA synthetaseGat genesAsparaginyl-tRNAGenome sequenceMost bacteriaGlutaminyl-tRNAAmidotransferaseProtein synthesisSynthetasesSynthetaseGenesAmide donorEnzymeAspGluGenome
2000
Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process
Woese C, Olsen G, Ibba M, Söll D. Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process. Microbiology And Molecular Biology Reviews 2000, 64: 202-236. PMID: 10704480, PMCID: PMC98992, DOI: 10.1128/mmbr.64.1.202-236.2000.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetasesIndividual aminoacyl-tRNA synthetasesEvolutionary processesAAR geneEvolutionary relationshipsPhylogenetic treeGenetic codeUniversal phylogenetic treeDistant evolutionary pastOrganismal phylogenyOrganismal domainsCodon assignmentsTaxonomic distributionEvolutionary pastHorizontal transferEvolutionary profilesGenetic materialIndividual enzymesEvolutionary perspectiveSynthetasesGenesEnzymeBacteriaModern counterpartsTreesOne Polypeptide with Two Aminoacyl-tRNA Synthetase Activities
Stathopoulos C, Li T, Longman R, Vothknecht U, Becker H, Ibba M, Söll D. One Polypeptide with Two Aminoacyl-tRNA Synthetase Activities. Science 2000, 287: 479-482. PMID: 10642548, DOI: 10.1126/science.287.5452.479.Peer-Reviewed Original ResearchConceptsProlyl-tRNA synthetaseProtein synthesisCysteinyl-tRNA synthetase activityAmino-terminal sequenceSynthetase activityAminoacyl-tRNA synthetase activityCertain archaeaEvolutionary originMethanococcus jannaschiiGenome sequenceSubstrate specificityGenetic analysisSuch organismsMessenger RNARNA synthetasesSynthetaseSequenceArchaeaJannaschiiSynthetasesRNAOrganismsPolypeptideProlylProtein
1999
Archaeal Aminoacyl-tRNA Synthesis: Diversity Replaces Dogma
Tumbula D, Vothknecht U, Kim H, Ibba M, Min B, Li T, Pelaschier J, Stathopoulos C, Becker H, Söll D. Archaeal Aminoacyl-tRNA Synthesis: Diversity Replaces Dogma. Genetics 1999, 152: 1269-1276. PMID: 10430557, PMCID: PMC1460689, DOI: 10.1093/genetics/152.4.1269.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthesisGene transfer eventsPhenylalanyl-tRNA synthetasesLysyl-tRNA synthetaseTransamidation pathwayExtant organismsMethanococcus jannaschiiAsparaginyl-tRNAProtein biosynthesisGenetic codeGene expressionGenome sequencingAminoacyl-tRNAArchaeaMethanobacterium thermoautotrophicumMolecular biologyUnexpected levelNovel pathwayTransfer eventsFaithful translationPathwayJannaschiiSynthetasesBiosynthesisOrganismsSubstrate recognition by class I lysyl-tRNA synthetases: A molecular basis for gene displacement
Ibba M, Losey H, Kawarabayasi Y, Kikuchi H, Bunjun S, Söll D. Substrate recognition by class I lysyl-tRNA synthetases: A molecular basis for gene displacement. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 418-423. PMID: 9892648, PMCID: PMC15151, DOI: 10.1073/pnas.96.2.418.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceBorrelia burgdorferi GroupCloning, MolecularDiphosphatesEscherichia coliEvolution, MolecularGenes, ArchaealGenes, BacterialGenetic Complementation TestKineticsLysine-tRNA LigaseMethanococcusMolecular Sequence DataNucleic Acid ConformationPhylogenyRNA, Transfer, Amino AcylSequence Analysis, DNASubstrate SpecificityTranscription, GeneticConceptsClass II LysRSAminoacyl-tRNA synthetasesLysyl-tRNA synthetasesSubstrate recognitionMolecular basisBacterial class IClass II enzymesSequence-specific recognitionGene displacementTranslational apparatusTRNA recognitionEscherichia coli strainsLysRSLysRSsSame nucleotideSynthetasesDiscriminator baseUnrelated typesLysine activationCertain bacteriaII enzymesColi strainsTRNALysClass IEnzyme
1998
Maize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNASer in vivo and in vitro
Rokov J, Söll D, Weygand-Durašević I. Maize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNASer in vivo and in vitro. Plant Molecular Biology 1998, 38: 497-502. PMID: 9747857, DOI: 10.1023/a:1006088516228.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseMitochondrial seryl-tRNA synthetasePutative mature proteinSeryl-tRNA synthetasesEscherichia coliStructure/function relationshipsMature proteinGene sequencesMutant strainSignificant similarityFunctional identityN-terminalYeast tRNAMitochondrial functionFunction relationshipsProteinPoor substrateSynthetaseColiSynthetasesTRNAVivoCDNAMaizeEnzyme
1997
Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi
Ibba M, Bono J, Rosa P, Söll D. Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 14383-14388. PMID: 9405621, PMCID: PMC24988, DOI: 10.1073/pnas.94.26.14383.Peer-Reviewed Original ResearchConceptsLysyl-tRNA synthetasesLysyl-tRNA synthetaseOpen reading frameReading frameAminoacyl-tRNA synthetasesLyme disease spirochete Borrelia burgdorferiGroup of enzymesLysyl-tRNA synthetase activityAmino acid levelsBacterial pathogen Borrelia burgdorferiArchaeal kingdomHeterologous expressionProtein biosynthesisGenomic sequencesMRNA translationPathogen Borrelia burgdorferiSignificant similarityLysyl-tRNASynthetasesB. burgdorferiBorrelia burgdorferiEscherichia coliEukaryaSpirochete Borrelia burgdorferiPathogenic spirochetesA Euryarchaeal Lysyl-tRNA Synthetase: Resemblance to Class I Synthetases
Ibba M, Morgan S, Curnow A, Pridmore D, Vothknecht U, Gardner W, Lin W, Woese C, Söll D. A Euryarchaeal Lysyl-tRNA Synthetase: Resemblance to Class I Synthetases. Science 1997, 278: 1119-1122. PMID: 9353192, DOI: 10.1126/science.278.5340.1119.Peer-Reviewed Original ResearchConceptsClass I aminoacyl-tRNA synthetaseCrenarchaeote Sulfolobus solfataricusDinucleotide-binding domainAminoacyl-tRNA synthetasesAmino acid motifsAmino acid sequenceAminoacyl-tRNA synthetaseLysyl-tRNA synthetaseClass II synthetasesEuryarchaeal genomesUnassigned functionMethanococcus jannaschiiMethanococcus maripaludisLysRS proteinsReading frameSulfolobus solfataricusAcid motifAcid sequenceSuch organismsMethanobacterium thermoautotrophicumLysRSProteinSynthetasesSynthetaseRNA synthetaseGlutamyl-tRNA sythetase.
Freist W, Gauss D, Söll D, Lapointe J. Glutamyl-tRNA sythetase. Biological Chemistry 1997, 378: 1313-29. PMID: 9426192.Peer-Reviewed Original ResearchConceptsGlutamyl-tRNA synthetaseGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesNegative eubacteriaBacterial glutamyl-tRNA synthetasesATP/PPiHigh molecular mass complexesClass I aminoacyl-tRNA synthetasesCytoplasm of eukaryotesE. coli GlnRSGlutamyl-tRNA synthetasesMolecular mass complexesN-terminal halfC-terminal halfAmino acid residuesDihydrouridine (DHU) armPhylogenetic studiesSpecific amidotransferaseGlutamyl-prolylMass complexesTRNA synthetasesCognate tRNAAcid residuesAcceptor stemSynthetasesDefining the Active Site of Yeast Seryl-tRNA Synthetase MUTATIONS IN MOTIF 2 LOOP RESIDUES AFFECT tRNA-DEPENDENT AMINO ACID RECOGNITION*
Lenhard B, Filipić S, Landeka I, Škrtić I, Söll D, Weygand-Durašević I. Defining the Active Site of Yeast Seryl-tRNA Synthetase MUTATIONS IN MOTIF 2 LOOP RESIDUES AFFECT tRNA-DEPENDENT AMINO ACID RECOGNITION*. Journal Of Biological Chemistry 1997, 272: 1136-1141. PMID: 8995413, DOI: 10.1074/jbc.272.2.1136.Peer-Reviewed Original ResearchConceptsMotif 2 loopAmino acid recognitionSeryl-tRNA synthetaseClass II aminoacyl-tRNA synthetasesSeryl-tRNA synthetasesYeast seryl-tRNA synthetaseAmino acidsLoss of complementationAminoacyl-tRNA synthetasesActive sitePresence of tRNASteady-state kinetic analysisProkaryotic counterpartsYeast enzymeElevated Km valuesNull allelesConformational changesTRNAAcceptor endSynthetasesGenesATPStructural dataStructural studiesSerinetRNA-dependent amino acid transformations.
Curnow A, Hong K, Yuan R, Söll D. tRNA-dependent amino acid transformations. Nucleic Acids Symposium Series 1997, 2-4. PMID: 9478189.Peer-Reviewed Original ResearchAminoacyl-tRNA synthesis in Archaea.
Ibba M, Celic I, Curnow A, Kim H, Pelaschier J, Tumbula D, Vothknecht U, Woese C, Söll D. Aminoacyl-tRNA synthesis in Archaea. Nucleic Acids Symposium Series 1997, 305-6. PMID: 9586121.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthesisLysyl-tRNA synthetasesGlutaminyl-tRNA synthetasesArchaeon Haloferax volcaniiArchaeal genomesGlu-tRNAAsn-tRNAHaloferax volcaniiNumber of organismsGln-tRNAGenetic studiesArchaeaAsp-tRNASynthetasesAsparaginylCysteinylEukaryaVolcaniiGenomeGlutaminylOrganismsSequencingBacteriaEnzymeTransamidation
1996
Glutaminyl‐tRNA synthetase: from genetics to molecular recognition
Ibba M, Hong K, Söll D. Glutaminyl‐tRNA synthetase: from genetics to molecular recognition. Genes To Cells 1996, 1: 421-427. PMID: 9078373, DOI: 10.1046/j.1365-2443.1996.d01-255.x.Peer-Reviewed Original ResearchConceptsEscherichia coli glutaminyl-tRNA synthetaseMajority of tRNAsCorrect amino acidGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesSequence-specific interactionsAmino acid recognitionEfficiency of aminoacylationGenetic codeTRNA selectionGlnRTRNAAmino acidsNoncognate tRNAsCellular viabilityStructural studiesMolecular recognitionSynthetasesAminoacylationComplex displaysGeneticsSynthetaseGlutamineMechanismViabilityAminoacyl-tRNA Synthetases Optimize Both Cognate tRNA Recognition and Discrimination against Noncognate tRNAs †
Sherman J, Söll D. Aminoacyl-tRNA Synthetases Optimize Both Cognate tRNA Recognition and Discrimination against Noncognate tRNAs †. Biochemistry 1996, 35: 601-607. PMID: 8555233, DOI: 10.1021/bi951602b.Peer-Reviewed Original ResearchConceptsTRNA recognitionNoncognate tRNAsEscherichia coli glutaminyl-tRNA synthetaseWild-type GlnRSGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesNucleic acid interactionsGlutamine tRNAFirst base pairMutational analysisSpecific proteinsTRNAGlnRSequence preferenceMutantsBase pairsAcid interactionsDecreased affinityVivoTRNAGlnAffinitySynthetasesProteinSynthetaseCrystal structure