2008
Life without RNase P
Randau L, Schröder I, Söll D. Life without RNase P. Nature 2008, 453: 120-123. PMID: 18451863, DOI: 10.1038/nature06833.Peer-Reviewed Original Research
2002
A one‐step method for in vitro production of tRNA transcripts
Korencić D, Söll D, Ambrogelly A. A one‐step method for in vitro production of tRNA transcripts. Nucleic Acids Research 2002, 30: e105-e105. PMID: 12384607, PMCID: PMC137149, DOI: 10.1093/nar/gnf104.Peer-Reviewed Original ResearchConceptsTRNA transcriptsT7 RNA polymeraseLarge-scale plasmid preparationTRNA genesMicrobial genomesTRNA functionsDNA promoterRNA polymeraseRNA moleculesT7 promoterBiochemical characterizationTranscription templateDNA templateNew enzymeTranscriptsLarge oligonucleotidesTranscriptionGood substratePromoterShort oligonucleotidesEnzymatic digestionRapid productionPlasmid preparationsGenomeOligonucleotideDivergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana: expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling
Ujwal ML, McCormac AC, Goulding A, Madan Kumar A, Söll D, Terry MJ. Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana: expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling. Plant Molecular Biology 2002, 50: 81-89. PMID: 12139011, DOI: 10.1023/a:1016081114758.Peer-Reviewed Original ResearchMeSH KeywordsAldehyde OxidoreductasesArabidopsisBase SequenceCarbohydratesDNA, PlantFructoseGene Expression Regulation, EnzymologicGene Expression Regulation, PlantGlucoseGlucuronidaseLightMolecular Sequence DataPlants, Genetically ModifiedPlastidsPromoter Regions, GeneticRecombinant Fusion ProteinsSequence DeletionSignal TransductionSucroseConceptsGlutamyl-tRNA reductaseSynthesis pathwayLight-dependent mannerProduction of hemeKey regulatory stepL. ColPlastid signalingPlastid signalsTransgenic ArabidopsisArabidopsis thalianaHemA geneGene familyPhotosynthetic tissuesGusA expressionDeletion analysisFirst enzymeRegulatory stepALA synthesisHEMA2HEMA1Fusion constructsBp fragmentDivergent regulationArabidopsisPromoter
1994
Coexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli
Weygand-Durasević I, Nalaskowska M, Söll D. Coexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli. Journal Of Bacteriology 1994, 176: 232-239. PMID: 8282701, PMCID: PMC205035, DOI: 10.1128/jb.176.1.232-239.1994.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast seryl-tRNA synthetaseEscherichia coliSerine tRNA geneE. coliConservation of determinantsTRNA genesSchizosaccharomyces pombePrimary transcriptPlasmid promoterAmber suppressionTRNA identityFunctional expressionColiCoexpressionSynthetasePombeGenesPromoterSuppressorTranscriptsOrganismsConservationExpressionEfficient suppression
1993
Yeast seryl‐tRNA synthetase expressed in Escherichia coli recognizes bacterial serine‐specific tRNAs in vivo
WEYGAND‐DURAŠEVIĆ I, Nenad B, Dieter J, Dieter S. Yeast seryl‐tRNA synthetase expressed in Escherichia coli recognizes bacterial serine‐specific tRNAs in vivo. The FEBS Journal 1993, 214: 869-877. PMID: 7686490, DOI: 10.1111/j.1432-1033.1993.tb17990.x.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast SerRSYeast seryl-tRNA synthetaseEscherichia coliE. coli tRNAVivo complementationProkaryotic hostsTwo-step purificationSer geneHomologous tRNAsNonpermissive temperatureSer mutantE. coli strainsTRNAE. coliColi strainsColiSynthetaseSerRSVivoComplementationMutantsSaccharomycesGenesPromoter
1986
The nucleotide sequence of a wheat γ-gliadin genomic clone
Sugiyama T, Rafalski A, Söll D. The nucleotide sequence of a wheat γ-gliadin genomic clone. Plant Science 1986, 44: 205-209. DOI: 10.1016/0168-9452(86)90092-0.Peer-Reviewed Original Research
1985
Conservation and variability of wheat α/β-gliadin genes
Sumner-Smith M, Rafalski J, Sugiyama T, Stoll M, Sōll D. Conservation and variability of wheat α/β-gliadin genes. Nucleic Acids Research 1985, 13: 3905-3916. PMID: 3839304, PMCID: PMC341285, DOI: 10.1093/nar/13.11.3905.Peer-Reviewed Original ResearchConceptsTypical eukaryotic promoterStorage protein genesEvolutionary relatednessGenomic clonesGliadin genesEukaryotic promotersGliadin familyProtein genePolyadenylation signalPolyglutamine stretchGene multiplicationClose homologyGlutamine codonGenesCertain mutationsCodonUnusual structureP-boxesIntronsHomologyPromoterPlantsProlineClonesRelatednessTwo control systems modulate the level of glutaminyl-tRNA synthetase in Escherichia coli
Cheung A, Watson L, Söll D. Two control systems modulate the level of glutaminyl-tRNA synthetase in Escherichia coli. Journal Of Bacteriology 1985, 161: 212-218. PMID: 2578447, PMCID: PMC214858, DOI: 10.1128/jb.161.1.212-218.1985.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseEscherichia coli glutaminyl-tRNA synthetaseBeta-galactosidase structural genePost-transcriptional regulationStructural geneTranscriptional controlRegulatory mutationsTranslational levelGln-10Metabolic regulationEscherichia coliSynthetaseVivo expressionTranscriptionGrowth conditionsRegulationMRNA levelsRegulatory studiesSynthetase levelsMutationsGlnGrowth rateGenesPromoterColi