2010
Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation
Nureki O, O’Donoghue P, Watanabe N, Ohmori A, Oshikane H, Araiso Y, Sheppard K, Söll D, Ishitani R. Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation. Nucleic Acids Research 2010, 38: 7286-7297. PMID: 20601684, PMCID: PMC2978374, DOI: 10.1093/nar/gkq605.Peer-Reviewed Original ResearchConceptsNon-discriminating glutamyl-tRNA synthetaseGlutamyl-tRNA synthetaseND-GluRSEscherichia coli GlnRSFormation of GlnCognate tRNA moleculesGlutaminyl-tRNA synthetaseAnticodon-binding domainEvolutionary predecessorPhylogenetic analysisGenetic codeMolecular basisTRNA moleculesRecognition pocketGlnRGenetic encodingAmino acidsSpecific ligationStructural determinantsKey eventsSynthetaseGluPromiscuous recognitionGluRGln
2008
Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality
Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O. Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality. Nature 2008, 457: 1163-1167. PMID: 19118381, PMCID: PMC2648862, DOI: 10.1038/nature07611.Peer-Reviewed Original ResearchConceptsAmino acidsMolecular basisLast universal common ancestorUniversal common ancestorUAG stop codonProteinogenic amino acidsCommon ancestorSuppressor tRNAStop codonDesulfitobacterium hafnienseStandard amino acidsTRNADistinct interactionsProteinPyrrolysinePylRSSelenocysteineAncestorCodonMachineryAcidVivoPairs
1999
Substrate recognition by class I lysyl-tRNA synthetases: A molecular basis for gene displacement
Ibba M, Losey H, Kawarabayasi Y, Kikuchi H, Bunjun S, Söll D. Substrate recognition by class I lysyl-tRNA synthetases: A molecular basis for gene displacement. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 418-423. PMID: 9892648, PMCID: PMC15151, DOI: 10.1073/pnas.96.2.418.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceBorrelia burgdorferi GroupCloning, MolecularDiphosphatesEscherichia coliEvolution, MolecularGenes, ArchaealGenes, BacterialGenetic Complementation TestKineticsLysine-tRNA LigaseMethanococcusMolecular Sequence DataNucleic Acid ConformationPhylogenyRNA, Transfer, Amino AcylSequence Analysis, DNASubstrate SpecificityTranscription, GeneticConceptsClass II LysRSAminoacyl-tRNA synthetasesLysyl-tRNA synthetasesSubstrate recognitionMolecular basisBacterial class IClass II enzymesSequence-specific recognitionGene displacementTranslational apparatusTRNA recognitionEscherichia coli strainsLysRSLysRSsSame nucleotideSynthetasesDiscriminator baseUnrelated typesLysine activationCertain bacteriaII enzymesColi strainsTRNALysClass IEnzyme
1979
Suppression
Steege D, Söll D. Suppression. Biological Regulation And Development 1979, 433-485. DOI: 10.1007/978-1-4684-3417-0_11.Peer-Reviewed Original ResearchGenetic suppressionType phenotypeFinal gene productsWild-type phenotypePairs of genesInformational suppressorsSuppressor mutationsNonsense suppressionMissense suppressionGene productsMolecular basisFrameshift suppressionGene expressionMutant organismsMolecular mechanismsCell metabolismGenetic selectionGenetic termsMutationsSecondary mutationsTranscriptionMacromolecular componentsPrimary mutationsSuppressorPhenotype