2021
Advancing care for acute gastrointestinal bleeding using artificial intelligence
Shung DL. Advancing care for acute gastrointestinal bleeding using artificial intelligence. Journal Of Gastroenterology And Hepatology 2021, 36: 273-278. PMID: 33624892, DOI: 10.1111/jgh.15372.Peer-Reviewed Original ResearchConceptsElectronic health recordsAcute gastrointestinal bleedingIntegration of machineHealth recordsNeural network modelGastrointestinal bleedingRisk prediction toolsNeural network-based analysisArtificial intelligenceMachine learningDecision supportRisk patientsNetwork modelReal timeMachineAlgorithmPrediction toolsClinical risk scoreLower gastrointestinal bleedingLow-risk patientsHigh-risk patientsProspective clinical trialsTriage of patientsClinician risk assessmentDelivery of careEarly identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules
Shung D, Tsay C, Laine L, Chang D, Li F, Thomas P, Partridge C, Simonov M, Hsiao A, Tay JK, Taylor A. Early identification of patients with acute gastrointestinal bleeding using natural language processing and decision rules. Journal Of Gastroenterology And Hepatology 2021, 36: 1590-1597. PMID: 33105045, DOI: 10.1111/jgh.15313.Peer-Reviewed Original ResearchConceptsNatural language processingElectronic health recordsLanguage processingNLP algorithmSystematized NomenclatureReal timeAcute gastrointestinal bleedingBidirectional Encoder RepresentationsDecision rulesEHR-based phenotyping algorithmsGastrointestinal bleedingRisk stratification scoresEncoder RepresentationsData elementsPhenotyping algorithmStratification scoresHealth recordsAlgorithmPhenotyping of patientsEmergency department patientsTime of presentationRisk stratification modelED reviewDeploymentExternal validation
2020
How Artificial Intelligence Will Impact Colonoscopy and Colorectal Screening
Shung DL, Byrne MF. How Artificial Intelligence Will Impact Colonoscopy and Colorectal Screening. Gastrointestinal Endoscopy Clinics Of North America 2020, 30: 585-595. PMID: 32439090, DOI: 10.1016/j.giec.2020.02.010.Peer-Reviewed Original ResearchConceptsArtificial intelligenceArtificial intelligence-based technologiesDeep learning algorithmsComputer-assisted diagnosisComputer-assisted detectionLearning algorithmCenter efficiencyIntelligenceUnnecessary costsKey challengesColorectal screeningWorkflowDetection rateLow-risk polypsAdenoma detection rateTechnologyQuality of screeningTreatment of cancerInterpretabilityGastrointestinal tractAlgorithmClinical integrationCostPolypsDiagnosis