2024
Mechanical plasticity of cell membranes enhances epithelial wound closure
Ton A, MacKeith A, Shattuck M, O'Hern C. Mechanical plasticity of cell membranes enhances epithelial wound closure. Physical Review Research 2024, 6: l012036. DOI: 10.1103/physrevresearch.6.l012036.Peer-Reviewed Original ResearchLarval wing discsWing discEmbryonic ectodermWing disc epitheliumCell membraneDeformable particlesDisc epitheliumElasto-plastic responseCell mechanicsPlastic deformationClosure behaviorDrosophilaCell morphologyDevelopmental stagesDP simulationsMechanical responseElastic responseEctodermLarvalMechanical plasticityCellsMembraneEpithelial wound closureEpithelial wound healingWound closure
2017
Particle rearrangement and softening contributions to the nonlinear mechanical response of glasses
Fan M, Zhang K, Schroers J, Shattuck MD, O'Hern CS. Particle rearrangement and softening contributions to the nonlinear mechanical response of glasses. Physical Review E 2017, 96: 032602. PMID: 29346996, DOI: 10.1103/physreve.96.032602.Peer-Reviewed Original ResearchMechanical responseStress lossParticle rearrangementGlass configurationRapid stress dropStress-strain curvesNonlinear mechanical responsePlastic flow regimeStrain curvesSlow cooling rateElastic regimeLarge strainsShear strainSmall strainsFlow regimeBinary Lennard-Jones glassCooling rateNumerical simulationsPure shearStrain directionAmorphous materialsGlassEnergy lossLennard-Jones glassStress dropEffects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible
Fan M, Wang M, Zhang K, Liu Y, Schroers J, Shattuck MD, O'Hern CS. Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible. Physical Review E 2017, 95: 022611. PMID: 28297989, DOI: 10.1103/physreve.95.022611.Peer-Reviewed Original ResearchParticle rearrangementMechanical responseShear cyclesParticle motionDuctile glassesEnhanced ductilityEnergy lossCumulative energy lossIrreversible particle motionPlastic flowAmorphous solidsLinear regimeApplied deformationElastic responseBinary Lennard-Jones glassCooling rateDuctilityPure shearGlassLennard-Jones glassSolidsColloidal glassesDuctileMotion
2012
Contact percolation transition in athermal particulate systems
Shen T, O'Hern CS, Shattuck MD. Contact percolation transition in athermal particulate systems. Physical Review E 2012, 85: 011308. PMID: 22400566, DOI: 10.1103/physreve.85.011308.Peer-Reviewed Original ResearchConceptsBidisperse particle size distributionsPercolation transitionCompression stepParticle size distributionMechanical responseSystem-spanning clusterDisplacement fieldDilute configurationsApplied stressCooperative particle motionParticle motionIsotropic compressionPercolating networkParticulate systemsElastic energyFrictionless particlesTwo-dimensional systemsUnjammed stateSize distributionDynamical matrixJammed systemsAdjacency matrixSuccessive compressionSpatial dimensionsComputer simulations