2022
Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion
Vora SM, Fontana P, Mao T, Leger V, Zhang Y, Fu TM, Lieberman J, Gehrke L, Shi M, Wang L, Iwasaki A, Wu H. Targeting stem-loop 1 of the SARS-CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2117198119. PMID: 35149555, PMCID: PMC8892331, DOI: 10.1073/pnas.2117198119.Peer-Reviewed Original ResearchConceptsSARS-CoV-2SARS-CoV-2 nonstructural protein 1Host protein synthesisSARS-CoV-2 5Nonstructural protein 1Viral translationNucleic acid antisenseAntiviral immunityProtein synthesisTherapeutic targetTransgenic miceViral protein synthesisViral replicationDrug resistanceHuman ACE2Infected cellsProtein 1COVID-19Virulence mechanismsNanomolar concentrationsHost translationPathogenic virusesEntry channelSuppressionTranslational suppressionEndogenous Retroviruses Provide Protection Against Vaginal HSV-2 Disease
Jayewickreme R, Mao T, Philbrick W, Kong Y, Treger RS, Lu P, Rakib T, Dong H, Dang-Lawson M, Guild WA, Lau TJ, Iwasaki A, Tokuyama M. Endogenous Retroviruses Provide Protection Against Vaginal HSV-2 Disease. Frontiers In Immunology 2022, 12: 758721. PMID: 35058919, PMCID: PMC8764156, DOI: 10.3389/fimmu.2021.758721.Peer-Reviewed Original ResearchConceptsHSV-2 infectionHSV-2 diseaseHerpes simplex virus type 2 infectionSimplex virus type 2 infectionEnhanced type I interferonIntravaginal HSV-2 infectionVaginal HSV-2 infectionVirus type 2 infectionEndogenous retrovirusesReceptor-deficient miceType 2 infectionHigh systemic levelsWildtype C57BL/6 miceType I interferonTLR7-/- miceC57BL/6 miceInfectious endogenous retrovirusDeficient miceIntravaginal applicationAntiviral immunityI interferonVaginal tissueDetrimental functionsTLR7Mice
2020
Commensal Microbiota Modulation of Natural Resistance to Virus Infection
Stefan KL, Kim MV, Iwasaki A, Kasper DL. Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell 2020, 183: 1312-1324.e10. PMID: 33212011, PMCID: PMC7799371, DOI: 10.1016/j.cell.2020.10.047.Peer-Reviewed Original ResearchConceptsMicrobial moleculesVesicular stomatitis virusCommensal microbesSpecific commensal microbesInduction of IFNVirus infectionNatural resistanceOuter membraneGut commensal microbesIFN-β expressionImmune system regulationHuman diseasesPhysiological importanceInduces expressionSource of IFNMicrobesHomeostatic conditionsStomatitis virusIFN-IsMicrobiota modulationAntiviral immunityCrucial mediatorIFNPolysaccharide AAntiviral activityContributions of maternal and fetal antiviral immunity in congenital disease
Yockey LJ, Lucas C, Iwasaki A. Contributions of maternal and fetal antiviral immunity in congenital disease. Science 2020, 368: 608-612. PMID: 32381717, DOI: 10.1126/science.aaz1960.Peer-Reviewed Original ResearchConceptsViral infectionCongenital diseaseDirect viral toxicityMaternal immune responseMaternal immune activationFetal developmental defectsFuture treatment strategiesImmune defense mechanismsPregnancy outcomesFetal demiseImmune activationUncontrolled inflammationMaternal healthChronic infectionTreatment strategiesImmune responseAntiviral immunityRange of syndromesFetal developmentTissue damagePathological effectsInfectionViral toxicityDevastating consequencesPregnancy
2017
B cells require Type 1 interferon to produce alloantibodies to transfused KEL‐expressing red blood cells in mice
Gibb DR, Liu J, Santhanakrishnan M, Natarajan P, Madrid DJ, Patel S, Eisenbarth SC, Tormey CA, Stowell SR, Iwasaki A, Hendrickson JE. B cells require Type 1 interferon to produce alloantibodies to transfused KEL‐expressing red blood cells in mice. Transfusion 2017, 57: 2595-2608. PMID: 28836263, PMCID: PMC5745367, DOI: 10.1111/trf.14288.Peer-Reviewed Original ResearchConceptsBone marrow chimeric miceHuman KEL glycoproteinType 1 interferonB cellsMean fluorescence intensityChimeric miceRed blood cell antigensBlood cell antigensGerminal center B cellsWT B cellsRBC alloimmunizationIgG alloantibodiesAlloimmune responseB cell differentiationRed blood cellsTransfusion protocolControl miceInflammatory stateWT miceAutoimmune pathologyIgG productionIFNAR1 expressionPlasma cellsAntiviral immunityInflammatory stimuliRAB15 empowers dendritic cells to drive antiviral immunity
Wong P, Iwasaki A. RAB15 empowers dendritic cells to drive antiviral immunity. Science Immunology 2017, 2: eaan6448. PMID: 28783705, DOI: 10.1126/sciimmunol.aan6448.Peer-Reviewed Original Research
2014
Apoptotic Caspases Prevent the Induction of Type I Interferons by Mitochondrial DNA
Rongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR, Wu Y, Yordy B, Lakhani SA, Kuan CY, Taniguchi T, Shadel GS, Chen ZJ, Iwasaki A, Flavell RA. Apoptotic Caspases Prevent the Induction of Type I Interferons by Mitochondrial DNA. Cell 2014, 159: 1563-1577. PMID: 25525875, PMCID: PMC4272443, DOI: 10.1016/j.cell.2014.11.037.Peer-Reviewed Original ResearchConceptsMitochondrial outer membrane permeabilizationCell deathOuter membrane permeabilizationType I interferonDNA-dependent activationCaspase-dependent mannerI interferonCGAS/STING pathwayMitochondrial DNAApoptotic caspasesMembrane permeabilizationActive caspasesProapoptotic caspasesMitochondriaCaspasesSTING pathwayIFN responseAntiviral immunityCentral roleDual controlPathwayProinflammatory typeInductionCellsActivationEpigenetic Reprogramming of the Type III Interferon Response Potentiates Antiviral Activity and Suppresses Tumor Growth
Ding S, Khoury-Hanold W, Iwasaki A, Robek MD. Epigenetic Reprogramming of the Type III Interferon Response Potentiates Antiviral Activity and Suppresses Tumor Growth. PLOS Biology 2014, 12: e1001758. PMID: 24409098, PMCID: PMC3883642, DOI: 10.1371/journal.pbio.1001758.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell Line, TumorCell ProliferationCpG IslandsCricetinaeCytomegalovirusDNA MethylationEpigenesis, GeneticHepatocytesHerpesvirus 1, HumanHistone Deacetylase InhibitorsHistone DeacetylasesHost-Pathogen InteractionsHumansInterferon-gammaMiceNIH 3T3 CellsOrgan SpecificityPromoter Regions, GeneticReceptors, CytokineReceptors, InterferonRNA, Small InterferingSignal TransductionVesiculovirusConceptsHDAC inhibitorsPro-apoptotic activityRepression machineryExpression programsTranscriptional silencingEpigenetic reprogrammingEpigenetic rewiringUbiquitous expressionMolecular mechanismsCell typesSpecific mannerSuppress tumor growthReceptor subunitsPotential antitumor strategyNonresponsive cellsIFN responseAntiviral immunityViral pathogensExpressionReceptor expressionType III interferonsAntitumor strategyΒ receptorTumor growthEpithelial origin
2011
Control of antiviral immunity by pattern recognition and the microbiome
Pang IK, Iwasaki A. Control of antiviral immunity by pattern recognition and the microbiome. Immunological Reviews 2011, 245: 209-226. PMID: 22168422, PMCID: PMC3659816, DOI: 10.1111/j.1600-065x.2011.01073.x.Peer-Reviewed Original ResearchConceptsAdaptive immunityInnate pattern recognition receptorsChronic viral infectionsAdaptive immune responsesExtra-intestinal infectionsHost immune systemPattern recognition receptorsTransduce signalsImmune activationAutoimmune diseasesProbiotic therapyMammalian hostsImmune responseAntiviral immunityViral infectionMucosal surfacesViral recognitionImmune systemInvasive microbesProper developmentMicrobial sensingResident microbiotaInnate defenseSuch diseasesHost susceptibilityMitoxosome: a mitochondrial platform for cross‐talk between cellular stress and antiviral signaling
Tal MC, Iwasaki A. Mitoxosome: a mitochondrial platform for cross‐talk between cellular stress and antiviral signaling. Immunological Reviews 2011, 243: 215-234. PMID: 21884179, PMCID: PMC3170140, DOI: 10.1111/j.1600-065x.2011.01038.x.Peer-Reviewed Original ResearchConceptsCellular stressMitochondrial functionCell biologic analysesViral recognitionInnate immune signalingDynamic relocalizationAntiviral signalingImmune signalingMitochondriaAntiviral responseMultiple pathwaysAntiviral immunityCurrent understandingRecent findingsSignalingViral replicationInnate responseIntegrated viewBiologic analysisRecent studiesSignalosomeRelocalizationKey componentStressIntegral platform
2009
Local advantage: skin DCs prime; skin memory T cells protect
Iwasaki A. Local advantage: skin DCs prime; skin memory T cells protect. Nature Immunology 2009, 10: 451-453. PMID: 19381136, PMCID: PMC3662044, DOI: 10.1038/ni0509-451.Peer-Reviewed Original Research
2008
Autophagy and antiviral immunity
Lee HK, Iwasaki A. Autophagy and antiviral immunity. Current Opinion In Immunology 2008, 20: 23-29. PMID: 18262399, PMCID: PMC2271118, DOI: 10.1016/j.coi.2008.01.001.Peer-Reviewed Original ResearchConceptsViral infectionViral replicationAdaptive antiviral immune responsesEndogenous viral antigensCD4 T cellsMHC class II loading compartmentsAntiviral immune responseCritical effector mechanismAdaptive immune systemViral antigensEffector mechanismsT cellsImmune responseAntiviral immunityImmune systemLoading compartmentCertain virusesInfectionAutophagyRecent studiesCellsAntigenImmunityCellular homeostasis
2004
Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments
Sato A, Iwasaki A. Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 16274-16279. PMID: 15534227, PMCID: PMC528964, DOI: 10.1073/pnas.0406268101.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsAntigens, DifferentiationCaspase 1Cell DifferentiationCell MovementDendritic CellsFemaleHerpesvirus 2, HumanImmunity, InnateInterleukin-12Membrane GlycoproteinsMiceMice, Inbred BALB CMice, Inbred C57BLMice, KnockoutMyeloid Differentiation Factor 88Receptors, Cell SurfaceReceptors, ImmunologicReceptors, InterferonSignal TransductionStromal CellsTh1 CellsToll-Like ReceptorsConceptsToll-like receptorsT cell responsesPattern recognition receptorsViral infectionContribution of TLRsRecognition receptorsCell responsesEffector T cell responsesHerpes simplex virus type 2Simplex virus type 2Antiviral adaptive immunityDendritic cell compartmentEffector T cellsDendritic cell maturationMost viral infectionsVirus type 2Infected epithelial cellsMucosal infectionsT cellsAdaptive immunityAntiviral immunityInfectious agentsType 2Immune recognitionStromal cells