2021
Four times out of Europe: Serial invasions of the winter moth, Operophtera brumata, to North America
Andersen J, Havill N, Caccone A, Elkinton J. Four times out of Europe: Serial invasions of the winter moth, Operophtera brumata, to North America. Molecular Ecology 2021, 30: 3439-3452. PMID: 34033202, DOI: 10.1111/mec.15983.Peer-Reviewed Original ResearchConceptsWinter mothNortheastern United StatesNorth AmericaInvasive winter mothNon-native speciesPopulation genetic dataAmount of diversityInvasion successSerial invasionInvaded regionsWidespread defoliationGenetic bottleneckBayesian assignmentOperophtera brumataMicrosatellite lociApproximate Bayesian computation methodsIndependent introductionsNorthern FennoscandiaCentral EuropeGenetic dataHybridization eventsBritish ColumbiaGeographic originNova ScotiaAmerica
2019
The population genomics of multiple tsetse fly (Glossina fuscipes fuscipes) admixture zones in Uganda
Saarman NP, Opiro R, Hyseni C, Echodu R, Opiyo EA, Dion K, Johnson T, Aksoy S, Caccone A. The population genomics of multiple tsetse fly (Glossina fuscipes fuscipes) admixture zones in Uganda. Molecular Ecology 2019, 28: 66-85. PMID: 30471158, PMCID: PMC9642080, DOI: 10.1111/mec.14957.Peer-Reviewed Original ResearchConceptsAdmixture zonePopulation genomicsHybrid zoneMitochondrial cytochrome oxidase IGenome-wide admixtureProcess of speciationCytochrome oxidase IPatterns of divergenceMaternal inheritance patternDivergent lineagesReproductive barriersSecondary contactOxidase IEvolutionary biologyApproximate Bayesian computationGenetic lineagesParental typesGenetic markersInheritance patternGenomicsLineagesMultiple generationsBayesian computationSpeciationRiver network
2016
Ancient and modern colonization of North America by hemlock woolly adelgid, Adelges tsugae (Hemiptera: Adelgidae), an invasive insect from East Asia
Havill N, Shiyake S, Lamb Galloway A, Foottit R, Yu G, Paradis A, Elkinton J, Montgomery M, Sano M, Caccone A. Ancient and modern colonization of North America by hemlock woolly adelgid, Adelges tsugae (Hemiptera: Adelgidae), an invasive insect from East Asia. Molecular Ecology 2016, 25: 2065-2080. PMID: 26880353, DOI: 10.1111/mec.13589.Peer-Reviewed Original ResearchConceptsWestern North AmericaEastern North AmericaNorth AmericaAdelges tsugaeHost specializationExtreme genetic bottleneckWorldwide genetic structurePleistocene glacial periodsSouthern JapanMitochondrial COI sequencesGlacial periodSpecies traitsAdelgid invasionApproximate Bayesian computationInvasive insectsHemlock speciesContinental scaleInvasion pathwaysTsuga speciesGenetic bottleneckGenetic structureHost treesEndemic lineagesInvasive pestHemlock trees
2015
Genetic Diversity and Population Structure of Trypanosoma brucei in Uganda: Implications for the Epidemiology of Sleeping Sickness and Nagana
Echodu R, Sistrom M, Bateta R, Murilla G, Okedi L, Aksoy S, Enyioha C, Enyaru J, Opiyo E, Gibson W, Caccone A. Genetic Diversity and Population Structure of Trypanosoma brucei in Uganda: Implications for the Epidemiology of Sleeping Sickness and Nagana. PLOS Neglected Tropical Diseases 2015, 9: e0003353. PMID: 25695634, PMCID: PMC4335064, DOI: 10.1371/journal.pntd.0003353.Peer-Reviewed Original Research
2013
Urban population genetics of slum‐dwelling rats (Rattus norvegicus) in Salvador, Brazil
Kajdacsi B, Costa F, Hyseni C, Porter F, Brown J, Rodrigues G, Farias H, Reis MG, Childs JE, Ko AI, Caccone A. Urban population genetics of slum‐dwelling rats (Rattus norvegicus) in Salvador, Brazil. Molecular Ecology 2013, 22: 5056-5070. PMID: 24118116, PMCID: PMC3864905, DOI: 10.1111/mec.12455.Peer-Reviewed Original ResearchConceptsGenetic structurePopulation genetic structureComplex genetic structureSmall geographical distancesGene flowGenetic clustersGenetic diversityMicrosatellite lociPopulation geneticsUrban landscapeGenetic variationPopulation ecologyGenetic dataHeterogeneous urban landscapesDistinct sampling sitesGeographical distanceRodent control measuresRodent control strategiesZoonotic pathogensR. norvegicusSampling sitesSpatial connectivityRat populationsOvergrown vegetationBayesian analysis
2012
Genetic isolation within the malaria mosquito Anopheles melas
Deitz K, Athrey G, Reddy M, Overgaard H, Matias A, Jawara M, della Torre A, Petrarca V, Pinto J, Kiszewski A, Kengne P, Costantini C, Caccone A, Slotman M. Genetic isolation within the malaria mosquito Anopheles melas. Molecular Ecology 2012, 21: 4498-4513. PMID: 22882458, PMCID: PMC4067978, DOI: 10.1111/j.1365-294x.2012.05724.x.Peer-Reviewed Original ResearchConceptsMicrosatellite dataIsland populationsGambiae complexMaximum likelihood phylogenetic analysisBp of mtDNALevel of divergenceLast glaciation periodA. gambiae complexMalaria vectorsSalt marsh grassAnopheles gambiae complexAnopheles melasMajor malaria vectorApproximate Bayesian analysisMtDNA divergenceGenetic differentiationGenetic divergenceGenetic isolationMainland populationsPhylogenetic analysisPopulation structureMicrosatellite markersLarval habitatsA. gambiaeGlaciation period
2008
The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex
Parmakelis A, Slotman MA, Marshall JC, Awono-Ambene PH, Antonio-Nkondjio C, Simard F, Caccone A, Powell JR. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex. BMC Ecology And Evolution 2008, 8: 79. PMID: 18325105, PMCID: PMC2288592, DOI: 10.1186/1471-2148-8-79.Peer-Reviewed Original ResearchConceptsInsect innate immune systemAnopheles gambiae speciesLevel of polymorphismAnopheles gambiae complexSpecific adaptive responsesAncestral polymorphismPhylogenetic frameworkMolecular evolutionSuch genesGambiae speciesPositive selectionImmunity genesSelection pressureCandidate genesImmune genesMosquito's abilityGambiae complexStudied genesGenesInnate immune systemAdaptive responseMalaria parasitesPlasmodium parasitesEase of manipulationSpecies
2007
Lonesome George is not alone among Galápagos tortoises
Russello MA, Beheregaray LB, Gibbs JP, Fritts T, Havill N, Powell JR, Caccone A. Lonesome George is not alone among Galápagos tortoises. Current Biology 2007, 17: r317-r318. PMID: 17470342, DOI: 10.1016/j.cub.2007.03.002.Peer-Reviewed Original Research
2006
A Bayesian approach on molecules and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts
Steinfartz S, Vicario S, Arntzen J, Caccone A. A Bayesian approach on molecules and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts. Journal Of Experimental Zoology Part B Molecular And Developmental Evolution 2006, 308B: 139-162. PMID: 16969762, DOI: 10.1002/jez.b.21119.Peer-Reviewed Original ResearchConceptsCourtship traitsSpecies of TriturusDNA sequence dataLast common ancestorTrue salamandersSalamandrid speciesMitochondrial genesMolecular phylogenyTriturus newtsGenus TriturusSpecies assemblagesPhylogenetic positionCommon ancestorEuropean newtsFamily SalamandridaeEvolutionary patternsT. vittatusMorphological charactersSequence dataLife historySalamandridaeT. alpestrisTemporal divergenceNewtsTriturusAn analysis of species boundaries and biogeographic patterns in a cryptic species complex: The rotifer—Brachionus plicatilis
Suatoni E, Vicario S, Rice S, Snell T, Caccone A. An analysis of species boundaries and biogeographic patterns in a cryptic species complex: The rotifer—Brachionus plicatilis. Molecular Phylogenetics And Evolution 2006, 41: 86-98. PMID: 16815046, DOI: 10.1016/j.ympev.2006.04.025.Peer-Reviewed Original ResearchConceptsCryptic species complexSpecies conceptSpecies boundariesCryptic complexesSpecies complexRotifer Brachionus plicatilisGenealogical species conceptMolecular sequence divergenceBiological species conceptEvidence of isolationMultiple species conceptsDifferent species conceptsLarge geographic scalesReproductive isolationMolecular phylogeneticsSpecies hypothesesBiogeographic patternsPhylogenetic dataSequence divergencePassive dispersalLarge vertebratesMarine invertebratesPhylogenetic studiesReproductive successCosmopolitan species
2004
Relict snakes of North America and their relationships within Caenophidia, using likelihood-based Bayesian methods on mitochondrial sequences
Pinou T, Vicario S, Marschner M, Caccone A. Relict snakes of North America and their relationships within Caenophidia, using likelihood-based Bayesian methods on mitochondrial sequences. Molecular Phylogenetics And Evolution 2004, 32: 563-574. PMID: 15223038, DOI: 10.1016/j.ympev.2004.02.005.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBayes TheoremColubridaeDNA, MitochondrialLikelihood FunctionsNorth AmericaPhylogenyPolymorphism, GeneticConceptsNorth American snakesPhylogenetic relationshipsAmerican snakesRibosomal gene sequencesLikelihood-based Bayesian methodsMitochondrial sequencesSnake cladesGene sequencesParallel evolutionHemipenial morphologySnake speciesPutative examplesSnakesNorth AmericaBayesian analysisSequenceCladeDipsadidsDipsadidaeCaenophidiaNatricidaeSpeciesRelictBayesian methods
2003
Xantusiid “night” lizards: a puzzling phylogenetic problem revisited using likelihood-based Bayesian methods on mtDNA sequences
Vicario S, Caccone A, Gauthier J. Xantusiid “night” lizards: a puzzling phylogenetic problem revisited using likelihood-based Bayesian methods on mtDNA sequences. Molecular Phylogenetics And Evolution 2003, 26: 243-261. PMID: 12565035, DOI: 10.1016/s1055-7903(02)00313-5.Peer-Reviewed Original ResearchConceptsDivergence time estimatesXantusia riversianaCytochrome b geneMaximum parsimony analysisCalifornia Channel IslandsLikelihood-based Bayesian methodsIsland endemicsMitochondrial genesLizard evolutionAncestral stateScleroglossan lizardsRibosomal genesMtDNA sequencesPhylogenetic problemsCrown cladeAdditional cladesPhylogenetic analysisNeighbor-JoiningParsimony analysisB geneBoundary bolide impactRock crevicesCladeMaximum likelihoodXantusia
2002
The evolutionary origin of Indian Ocean tortoises (Dipsochelys)
Palkovacs E, Gerlach J, Caccone A. The evolutionary origin of Indian Ocean tortoises (Dipsochelys). Molecular Phylogenetics And Evolution 2002, 24: 216-227. PMID: 12144758, DOI: 10.1016/s1055-7903(02)00211-7.Peer-Reviewed Original ResearchConceptsWestern Indian Ocean islandsGiant tortoisesIndian Ocean islandsIndian Ocean giant tortoisesIndian OceanCyt b geneDNA substitution ratesOcean islandsShort generation timeSmall body sizeSource of colonizationMalagasy lineagesEvolutionary originWestern Indian OceanWild populationsMitochondrial DNAPhylogenetic analysisSequence evolutionB geneSubstitution ratesBody sizeOcean currentsEast coastGeneration timeTortoises