2022
Population genetics of an invasive mosquito vector, Aedes albopictus in the Northeastern USA
Gloria-Soria A, Shragai T, Ciota A, Duval T, Alto B, Martins A, Westby K, Medley K, Unlu I, Campbell S, Kawalkowski M, Tsuda Y, Higa Y, Indelicato N, Leisnham P, Caccone A, Armstrong P. Population genetics of an invasive mosquito vector, Aedes albopictus in the Northeastern USA. NeoBiota 2022, 78: 99-127. PMID: 37408738, PMCID: PMC10321554, DOI: 10.3897/neobiota.78.84986.Peer-Reviewed Original ResearchPopulations of AeGenetic structureGenetic diversityPopulation geneticsGenetic cladesMicrosatellite markersAsian tiger mosquitoNortheastern USARange northwardsNorthern rangeAlbopictus populationsFounder effectPopulation turnoverVector suppressionEast coastTiger mosquitoEastern USAInvasive mosquito vectorsMosquito vectorsAedes albopictusLocal populationWarming conditionsAlbopictusCold wintersConsecutive yearsMultiple introductions and overwintering shape the progressive invasion of Aedes albopictus beyond the Alps
Vavassori L, Honnen A, Saarman N, Caccone A, Müller P. Multiple introductions and overwintering shape the progressive invasion of Aedes albopictus beyond the Alps. Ecology And Evolution 2022, 12: e9138. PMID: 35903757, PMCID: PMC9313497, DOI: 10.1002/ece3.9138.Peer-Reviewed Original ResearchDouble-digest restriction site-associated DNA sequencingRestriction site-associated DNA sequencingWeak genetic structurePopulation genomic dataAsian native rangeGenome-wide SNPsHuman-aided dispersalBiogeographic barriersGenetic structureNative rangeGenetic clustersInvasive speciesRecent invasionGenetic patternsGenomic dataSNP dataGenetic admixtureMultiple introductionsDisease vectorsNorthward expansionDNA sequencingMosquito populationsAedes albopictusProgressive invasionFull siblings
2017
Population genomics of the Asian tiger mosquito, Aedes albopictus: insights into the recent worldwide invasion
Kotsakiozi P, Richardson J, Pichler V, Favia G, Martins A, Urbanelli S, Armbruster P, Caccone A. Population genomics of the Asian tiger mosquito, Aedes albopictus: insights into the recent worldwide invasion. Ecology And Evolution 2017, 7: 10143-10157. PMID: 29238544, PMCID: PMC5723592, DOI: 10.1002/ece3.3514.Peer-Reviewed Original ResearchSingle nucleotide polymorphismsGenetic structureRecent invasionRestriction Site-Associated DNA SequencingAsian tiger mosquitoGenomics-based approachesTiger mosquitoPopulation genomicsInvasive populationsNative rangeWorldwide invasionMultiple invasionsGenomic diversityRange populationsPopulation clustersMajor clustersDNA sequencingNucleotide polymorphismsAedes albopictusVector control strategiesInvasionMosquitoesLocal scaleDifferentiationGenomicsGenomic analyses of African Trypanozoon strains to assess evolutionary relationships and identify markers for strain identification
Richardson JB, Lee KY, Mireji P, Enyaru J, Sistrom M, Aksoy S, Zhao H, Caccone A. Genomic analyses of African Trypanozoon strains to assess evolutionary relationships and identify markers for strain identification. PLOS Neglected Tropical Diseases 2017, 11: e0005949. PMID: 28961238, PMCID: PMC5636163, DOI: 10.1371/journal.pntd.0005949.Peer-Reviewed Original ResearchConceptsAfrican trypanosomesHigh genetic similarityMaximum likelihood phylogenyStrain identificationGenomic resourcesGenetic structureEvolutionary relationshipsGenetic clustersPhylogenetic analysisGenomic analysisSingle nucleotide polymorphismsTaxonomic classificationGenetic similarityLarge comparative analysisGenetic markersHigh similarityGeographic originEvansi strainsSNPsNucleotide polymorphismsT. brucei bruceiPhylogenyTrypanosomesTrypanosomaTrypanozoonGenetic diversity and population structure of the tsetse fly Glossina fuscipes fuscipes (Diptera: Glossinidae) in Northern Uganda: Implications for vector control
Opiro R, Saarman NP, Echodu R, Opiyo EA, Dion K, Halyard A, Dunn AW, Aksoy S, Caccone A. Genetic diversity and population structure of the tsetse fly Glossina fuscipes fuscipes (Diptera: Glossinidae) in Northern Uganda: Implications for vector control. PLOS Neglected Tropical Diseases 2017, 11: e0005485. PMID: 28453513, PMCID: PMC5425221, DOI: 10.1371/journal.pntd.0005485.Peer-Reviewed Original ResearchConceptsAnimal African trypanosomiasisGenetic clustersEffective population size estimatesLake KyogaRecent population bottleneckMitochondrial DNA markersDistinct genetic clustersPolymorphic microsatellite lociNile drainagePopulation size estimatesGenetic structurePopulation bottlenecksMain haplogroupsGenetic diversityMicrosatellite lociGenetic assignmentDNA markersPopulation structureMtDNA analysisGenetic admixtureSampling sitesGenetic unitsMost populationsTrypanosoma parasitesHuman African trypanosomiasis
2016
Ancient and modern colonization of North America by hemlock woolly adelgid, Adelges tsugae (Hemiptera: Adelgidae), an invasive insect from East Asia
Havill N, Shiyake S, Lamb Galloway A, Foottit R, Yu G, Paradis A, Elkinton J, Montgomery M, Sano M, Caccone A. Ancient and modern colonization of North America by hemlock woolly adelgid, Adelges tsugae (Hemiptera: Adelgidae), an invasive insect from East Asia. Molecular Ecology 2016, 25: 2065-2080. PMID: 26880353, DOI: 10.1111/mec.13589.Peer-Reviewed Original ResearchConceptsWestern North AmericaEastern North AmericaNorth AmericaAdelges tsugaeHost specializationExtreme genetic bottleneckWorldwide genetic structurePleistocene glacial periodsSouthern JapanMitochondrial COI sequencesGlacial periodSpecies traitsAdelgid invasionApproximate Bayesian computationInvasive insectsHemlock speciesContinental scaleInvasion pathwaysTsuga speciesGenetic bottleneckGenetic structureHost treesEndemic lineagesInvasive pestHemlock trees
2013
Habitat fragmentation and the genetic structure of the Amazonian palm Mauritia flexuosa L.f. (Arecaceae) on the island of Trinidad
Federman S, Hyseni C, Clement W, Oatham M, Caccone A. Habitat fragmentation and the genetic structure of the Amazonian palm Mauritia flexuosa L.f. (Arecaceae) on the island of Trinidad. Conservation Genetics 2013, 15: 355-362. DOI: 10.1007/s10592-013-0543-2.Peer-Reviewed Original ResearchIsland of TrinidadGenetic structureAnimal-mediated seed dispersalSmall-scale spatial genetic structureLand use changeNearest-neighbor matingSpatial genetic structureTemporal genetic patternsMauritia flexuosa L.fHabitat fragmentationSuccessful conservationSeed dispersalAnthropogenic changesScientific ReserveMauritia flexuosaGenetic differentiationManagement planGene flowGenetic patternsStudy sitesGenetic diversitySmall collection areaGenetic exchangeWild populationsPopulation's abilityUrban population genetics of slum‐dwelling rats (Rattus norvegicus) in Salvador, Brazil
Kajdacsi B, Costa F, Hyseni C, Porter F, Brown J, Rodrigues G, Farias H, Reis MG, Childs JE, Ko AI, Caccone A. Urban population genetics of slum‐dwelling rats (Rattus norvegicus) in Salvador, Brazil. Molecular Ecology 2013, 22: 5056-5070. PMID: 24118116, PMCID: PMC3864905, DOI: 10.1111/mec.12455.Peer-Reviewed Original ResearchConceptsGenetic structurePopulation genetic structureComplex genetic structureSmall geographical distancesGene flowGenetic clustersGenetic diversityMicrosatellite lociPopulation geneticsUrban landscapeGenetic variationPopulation ecologyGenetic dataHeterogeneous urban landscapesDistinct sampling sitesGeographical distanceRodent control measuresRodent control strategiesZoonotic pathogensR. norvegicusSampling sitesSpatial connectivityRat populationsOvergrown vegetationBayesian analysis
2012
Hybridization between a native and introduced predator of Adelgidae: An unintended result of classical biological control
Havill N, Davis G, Mausel D, Klein J, McDonald R, Jones C, Fischer M, Salom S, Caccone A. Hybridization between a native and introduced predator of Adelgidae: An unintended result of classical biological control. Biological Control 2012, 63: 359-369. DOI: 10.1016/j.biocontrol.2012.08.001.Peer-Reviewed Original ResearchBiological control agentsEastern United StatesL. nigrinusBiological controlNorth AmericaDistribution of hemlockControl agentsLaricobius nigrinus FenderClassical biological controlMitochondrial COI haplotypesMajor geographic featuresOutcome of hybridizationWestern North AmericaNative biodiversityPest control effortsNative speciesNative relativesNative rangeLaricobius rubidusBeetle speciesLaricobius speciesWidespread hybridizationGenetic structureComplex mosaicAppalachian Mountains
2010
Population Genetic Structure of Aldabra Giant Tortoises
Balmer O, Ciofi C, Galbraith D, Swingland I, Zug G, Caccone A. Population Genetic Structure of Aldabra Giant Tortoises. Journal Of Heredity 2010, 102: 29-37. PMID: 20805288, DOI: 10.1093/jhered/esq096.Peer-Reviewed Original ResearchConceptsGenetic structurePopulation structureGiant tortoisesMitochondrial DNA control region sequencesPopulation genetic structureSignificant population structureControl region sequencesAldabra giant tortoisePrevious ecological studiesAllopatric divergenceNuclear lociPopulation subdivisionHabitat variationMtDNA sequencesMicrosatellite lociPopulation geneticsUnsuitable habitatGenetic variabilityAllelic variationRegion sequencesEcological factorsTerrestrial ecosystemsPopulation dynamicsAldabra AtollGeographical barriersGenetic Differentiation between Marine Iguanas from Different Breeding Sites on the Island of Santa Fé (Galápagos Archipelago)
Lanterbecq D, Glaberman S, Vitousek M, Steinfartz S, Benavides E, Wikelski M, Caccone A. Genetic Differentiation between Marine Iguanas from Different Breeding Sites on the Island of Santa Fé (Galápagos Archipelago). Journal Of Heredity 2010, 101: 663-675. PMID: 20538757, DOI: 10.1093/jhered/esq067.Peer-Reviewed Original ResearchConceptsMarine iguanasGenetic diversitySex-biased dispersalMitochondrial control regionMitochondrial DNA markersGalápagos marine iguanasSanta FéDifferent breeding sitesSouthern sitesGenetic differentiationEvolutionary signalGenetic structureMicrosatellite lociDNA markersControl regionGenetic variationGenetic patternsBreeding sitesLittle differentiationBase pairsNeighboring islandsIguanasDiversitySampling sitesDifferentiationPhylogeography and Population Structure of Glossina fuscipes fuscipes in Uganda: Implications for Control of Tsetse
Beadell JS, Hyseni C, Abila PP, Azabo R, Enyaru JC, Ouma JO, Mohammed YO, Okedi LM, Aksoy S, Caccone A. Phylogeography and Population Structure of Glossina fuscipes fuscipes in Uganda: Implications for Control of Tsetse. PLOS Neglected Tropical Diseases 2010, 4: e636. PMID: 20300518, PMCID: PMC2838784, DOI: 10.1371/journal.pntd.0000636.Peer-Reviewed Original ResearchConceptsGene flowPopulation structureLarge-scale genetic structureDivergent mitochondrial lineagesCurrent gene flowScale genetic structureBayesian assignment testsLittle gene flowHistorical colonization eventsZone of contactSouthern lineagesMitochondrial lineagesAssignment testsGenetic structureArea-wide controlMainland populationsColonization eventsMicrosatellite dataPopulation geneticsPhylogeographic analysisRiverine speciesIsland populationsAppropriate geographical scaleGenetic analysisMicrosatellite structure
2009
In situ population structure and ex situ representation of the endangered Amur tiger
HENRY P, MIQUELLE D, SUGIMOTO T, McCULLOUGH D, CACCONE A, RUSSELLO M. In situ population structure and ex situ representation of the endangered Amur tiger. Molecular Ecology 2009, 18: 3173-3184. PMID: 19555412, DOI: 10.1111/j.1365-294x.2009.04266.x.Peer-Reviewed Original ResearchConceptsGenetic variationPopulation genetic variationRecent population bottleneckPopulation genetic structurePotential gene flowEffective population sizeAmur tigersPostglacial colonizationWild tiger populationsGene flowGenetic structurePopulation bottlenecksNative rangeWild populationsDemographic historyGenetic diversityCaptive populationsPopulation structureDemographic contractionGene variantsHistorical contractionGenetic signaturesEcological connectivityPopulation sizeTiger populations
2007
Genetic population structure of Anopheles gambiae in Equatorial Guinea
Moreno M, Salgueiro P, Vicente J, Cano J, Berzosa P, de Lucio A, Simard F, Caccone A, Do Rosario V, Pinto J, Benito A. Genetic population structure of Anopheles gambiae in Equatorial Guinea. Malaria Journal 2007, 6: 137. PMID: 17937805, PMCID: PMC2100067, DOI: 10.1186/1475-2875-6-137.Peer-Reviewed Original ResearchConceptsGenetic differentiationMicrosatellite lociPopulation structureMainland samplesGenetic diversity parametersGenetic population structureGambiae s.A. gambiae s.Incipient speciationPopulation differentiationGene flowGenetic structureGenetic isolationS formMicrosatellite dataGenomic islandsContinental Equatorial GuineaDiversity parametersMosquito vector populationsChromosome 3Anopheles gambiaeIsland samplesAnopheles gambiae s.Shallow differentiationIsland of Bioko
2004
A set of microsatellite DNA markers for the one‐lined pencilfish Nannostomus unifasciatus, an Amazonian flooded forest fish
BEHEREGARAY L, SCHWARTZ T, MÖLLER L, CALL D, CHAO N, CACCONE A. A set of microsatellite DNA markers for the one‐lined pencilfish Nannostomus unifasciatus, an Amazonian flooded forest fish. Molecular Ecology Resources 2004, 4: 333-335. DOI: 10.1111/j.1471-8286.2004.00687.x.Peer-Reviewed Original ResearchPopulation genetic structureMicrosatellite DNA markersNumber of allelesFishery resourcesGenetic structureCentral AmazoniaDNA markersMicrosatellite lociPhylogeographical reconstructionConservation unitsForests of AmazoniaSmall fishForestAmazon basinAmazoniaLociFishRiverine communitiesHeterozygosityMarkersAllelesAmazonianAquaria
2003
Genetic structure of Mesoamerican populations of Big‐leaf mahogany (Swietenia macrophylla) inferred from microsatellite analysis
Novick R, Dick C, Lemes M, Navarro C, Caccone A, Bermingham E. Genetic structure of Mesoamerican populations of Big‐leaf mahogany (Swietenia macrophylla) inferred from microsatellite analysis. Molecular Ecology 2003, 12: 2885-2893. PMID: 14629370, DOI: 10.1046/j.1365-294x.2003.01951.x.Peer-Reviewed Original ResearchConceptsGenetic structurePhylogeographic structureStrong phylogeographic structureNeotropical tree speciesVariable microsatellite lociHigh-resolution markersBig-leaf mahoganyMahogany populationsGenetic differentiationCosta RicaBiogeographic historyNeotropical treeGenetic divergenceRegional biogeographyNative rangeNorthern populationsGenetic distanceGenetic diversityMicrosatellite lociAtlantic populationsPopulation structureAmerican treesMesoamerican populationsSwietenia macrophylla KingUnrooted dendrogramGenetic divergence, phylogeography and conservation units of giant tortoises from Santa Cruz and Pinzón, Galápagos Islands
Beheregaray L, Ciofi C, Caccone A, Gibbs J, Powell J. Genetic divergence, phylogeography and conservation units of giant tortoises from Santa Cruz and Pinzón, Galápagos Islands. Conservation Genetics 2003, 4: 31-46. DOI: 10.1023/a:1021864214375.Peer-Reviewed Original ResearchSan CristóbalDeep phylogeographic structureGiant tortoise populationSanta CruzConservation effortsConservation unitsIsland radiationsPhylogeographic structurePopulation colonizationTortoise populationsGenetic structureGalápagos IslandsAdaptive divergenceReproductive isolationGiant tortoisesEnvironmental agenciesGenetic divergenceDemographic historyDescendent populationsMicrosatellite markersGenealogical relationshipsPinzónIslandsCristóbalDivergence
2002
Microsatellite analysis of genetic divergence among populations of giant Galápagos tortoises
Ciofi C, Milinkovitch M, Gibbs J, Caccone A, Powell J. Microsatellite analysis of genetic divergence among populations of giant Galápagos tortoises. Molecular Ecology 2002, 11: 2265-2283. PMID: 12406238, DOI: 10.1046/j.1365-294x.2002.01617.x.Peer-Reviewed Original ResearchConceptsGiant Galápagos tortoisesGenetic divergenceGalápagos tortoisesIsland populationsVolcan WolfIndividual island populationsIslands of IsabelaGene flowAdaptive differentiationGenetic structureMtDNA diversityExtant populationsColonization eventsEvolutionary historyMicrosatellite lociDifferent taxaAllelic similarityHeavy exploitationDNA workMicrosatellite analysisDeterministic threatsDistinct populationsTortoisesInteresting modelDivergence