2023
Continuous positive airway pressure (CPAP) increases CSF flow and glymphatic transport
Ozturk B, Koundal S, Al Bizri E, Chen X, Gursky Z, Dai F, Lim A, Heerdt P, Kipnis J, Tannenbaum A, Lee H, Benveniste H. Continuous positive airway pressure (CPAP) increases CSF flow and glymphatic transport. JCI Insight 2023, 8: e170270. PMID: 37159262, PMCID: PMC10371231, DOI: 10.1172/jci.insight.170270.Peer-Reviewed Original ResearchConceptsContinuous positive airway pressurePositive airway pressureGlymphatic transportAirway pressureIntracranial pressureEnd-expiratory lung volumeCSF bulk flowCerebrospinal fluid flowArterial oxygenationUpper airwayLung volumeCPAP deviceRespiratory functionClearance functionTherapeutic benefitSkull baseAnesthetized rodentsCSF flowFluid homeostasisPhysiological testingLymphatic systemFunctional crosstalkClinical devicesAirwayRats
2022
Choroid plexus tissue perfusion and blood to CSF barrier function in rats measured with continuous arterial spin labeling
Lee H, Ozturk B, Stringer MS, Koundal S, MacIntosh BJ, Rothman D, Benveniste H. Choroid plexus tissue perfusion and blood to CSF barrier function in rats measured with continuous arterial spin labeling. NeuroImage 2022, 261: 119512. PMID: 35882269, PMCID: PMC9969358, DOI: 10.1016/j.neuroimage.2022.119512.Peer-Reviewed Original ResearchConceptsWater flowBlood perfusionLow-dose isofluraneCerebral blood flowClinical translational studiesAnti-diuretic hormoneContinuous arterial spinLevels of bloodMeasurement accuracyMagnetic resonance imagingArterial spin labelingCerebrospinal fluid productionAnesthetic regimensBalanced anesthesiaCerebral ventricleContinuous arterial spin labelingIsoflurane anesthesiaKey parametersSystemic administrationVentricular CSFImmune surveillanceArterial bloodBlood flowTissue perfusionChoroid plexusCharacterization of perivascular space pathology in a rat model of cerebral small vessel disease by in vivo magnetic resonance imaging
Monte B, Constantinou S, Koundal S, Lee H, Dai F, Gursky Z, Van Nostrand WE, Darbinyan A, Zlokovic BV, Wardlaw J, Benveniste H. Characterization of perivascular space pathology in a rat model of cerebral small vessel disease by in vivo magnetic resonance imaging. Cerebrovascular And Brain Metabolism Reviews 2022, 42: 1813-1826. PMID: 35673963, PMCID: PMC9536121, DOI: 10.1177/0271678x221105668.Peer-Reviewed Original ResearchConceptsSmall vessel diseaseCerebral small vessel diseaseT2W magnetic resonance imagesSHRSP ratsPerivascular spacesClinical relevanceMagnetic resonance imagesVessel diseaseSeverity of SVDGadoteric acidWistar-Kyoto control ratsHypertensive stroke-prone ratsStroke-prone ratsHuman post-mortem tissueT2-weighted magnetic resonance imagesMonths of ageT1-weighted imagingMagnetic resonance imagingPost-mortem tissueVivo magnetic resonance imagingPrimary endpointHyperintense lesionsProne ratsWKY ratsUnderlying pathophysiologyStudies on metabolic alterations due to hypobaric hypoxia in serum using NMR spectroscopy
Koundal S, Gandhi S, Khushu S. Studies on metabolic alterations due to hypobaric hypoxia in serum using NMR spectroscopy. Biomarkers 2022, 27: 562-567. PMID: 35532034, DOI: 10.1080/1354750x.2022.2076152.Peer-Reviewed Original ResearchConceptsHypobaric hypoxiaHypobaric hypoxia equivalentSerum metabolic changesPreclinical rat modelAmino acid metabolitesHigh-altitude hypoxiaHypoxia equivalentRat modelMetabolic alterationsHealth problemsKetone bodiesMultivariate analysisAcid metabolitesAltitude hypoxiaSerum samplesEarly detectionMetabolic changesHypoxiaMetabolism of membranePresent findingsSerumAlterationsCellular bioenergeticsPresent studyEnvironmental hypoxia
2020
Optimal Mass Transport with Lagrangian Workflow Reveals Advective and Diffusion Driven Solute Transport in the Glymphatic System
Koundal S, Elkin R, Nadeem S, Xue Y, Constantinou S, Sanggaard S, Liu X, Monte B, Xu F, Van Nostrand W, Nedergaard M, Lee H, Wardlaw J, Benveniste H, Tannenbaum A. Optimal Mass Transport with Lagrangian Workflow Reveals Advective and Diffusion Driven Solute Transport in the Glymphatic System. Scientific Reports 2020, 10: 1990. PMID: 32029859, PMCID: PMC7004986, DOI: 10.1038/s41598-020-59045-9.Peer-Reviewed Original Research
2015
“Omics” of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia
Koundal S, Gandhi S, Kaur T, Mazumder A, Khushu S. “Omics” of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia. OMICS A Journal Of Integrative Biology 2015, 19: 757-765. PMID: 26669710, DOI: 10.1089/omi.2015.0155.Peer-Reviewed Original ResearchConceptsHypobaric hypoxiaSports medicineHypobaric hypoxia exposurePreclinical rat modelHigh altitude medicineAltitude medicineCell membrane metabolismUse of metabolomicsUrinary metabolomeHepatic functionLiver histopathologyRat modelLiver functioningHypoxia exposureHealth problemsMultivariate analysisPotential biomarkersAttendant health problemsTCA cycle metabolitesBiomarker studiesHypoxiaUrine samplesTaurine metabolismMembrane metabolismCycle metabolites
2014
Neurometabolic and structural alterations in rat brain due to acute hypobaric hypoxia: in vivo 1H MRS at 7 T
Koundal S, Gandhi S, Kaur T, Khushu S. Neurometabolic and structural alterations in rat brain due to acute hypobaric hypoxia: in vivo 1H MRS at 7 T. NMR In Biomedicine 2014, 27: 341-347. PMID: 24395642, DOI: 10.1002/nbm.3068.Peer-Reviewed Original ResearchConceptsAcute hypobaric hypoxiaHypobaric hypoxiaRat brainHH exposureCA2/CA3 regionDays of normoxiaMetabolite levelsProcess of demyelinationMyo-inositol levelsDays post exposureVivo 1H MRSEarly risk assessmentGlutamatergic neuronsNeurometabolic changesAstrocyte metabolismCA3 regionN-acetylaspartateHippocampus regionMetabolic alterationsPost exposureMetabolic changesNormoxiaBrainFourth dayFirst day