2022
Virtual high‐count PET image generation using a deep learning method
Liu J, Ren S, Wang R, Mirian N, Tsai Y, Kulon M, Pucar D, Chen M, Liu C. Virtual high‐count PET image generation using a deep learning method. Medical Physics 2022, 49: 5830-5840. PMID: 35880541, PMCID: PMC9474624, DOI: 10.1002/mp.15867.Peer-Reviewed Original ResearchConceptsStructural similarity indexImage quality evaluationDeep learning-based methodsDeep learning methodsImage qualityLearning-based methodsPET datasetsStatic datasetsDL methodsNet networkImage generationPET imagesNetwork inputsImage counterpartsLearning methodsNetwork outputTraining datasetPeak signalPositron emission tomography (PET) imagesQuality evaluationDatasetCross-validation resultsMean square errorHigh-count imagesImages
2021
Association of COVID-19 mRNA Vaccine With Ipsilateral Axillary Lymph Node Reactivity on Imaging
Adin ME, Isufi E, Kulon M, Pucar D. Association of COVID-19 mRNA Vaccine With Ipsilateral Axillary Lymph Node Reactivity on Imaging. JAMA Oncology 2021, 7: 1241-1242. PMID: 34110378, PMCID: PMC8193545, DOI: 10.1001/jamaoncol.2021.1794.Peer-Reviewed Original Research
2020
Altered FDG Biodistribution in Subcutaneous White Fat on PET/CT Following l-Asparaginase Chemotherapy.
Young CR, Kulon ME, Boustani AM, Pucar D. Altered FDG Biodistribution in Subcutaneous White Fat on PET/CT Following l-Asparaginase Chemotherapy. Clinical Nuclear Medicine 2020, 46: e179-e180. PMID: 33086270, DOI: 10.1097/rlu.0000000000003340.Peer-Reviewed Original ResearchConceptsPET/CTAltered biodistributionMediastinal T-cell lymphoblastic lymphomaPosttreatment FDG PET/CTFDG PET/CTT-cell lymphoblastic lymphomaSubcutaneous white adipose tissueWhite adipose tissueTreatment response assessmentSubcutaneous white fatAsparaginase chemotherapyLymphoblastic lymphomaAsparaginase resistanceFDG biodistributionResponse assessmentWhite fatGlucose metabolismAdipose tissueTreatment cyclesLeukemic cellsVisceral activityCTBiodistributionChemotherapyDiffuse activity
2013
CT Pulmonary Angiography: Increasingly Diagnosing Less Severe Pulmonary Emboli
Schissler AJ, Rozenshtein A, Kulon ME, Pearson GD, Green RA, Stetson PD, Brenner DJ, D'Souza B, Tsai WY, Schluger NW, Einstein AJ. CT Pulmonary Angiography: Increasingly Diagnosing Less Severe Pulmonary Emboli. PLOS ONE 2013, 8: e65669. PMID: 23776522, PMCID: PMC3680477, DOI: 10.1371/journal.pone.0065669.Peer-Reviewed Original ResearchConceptsPulmonary emboliAcute pulmonary emboliMyocardial injuryDiagnostic yieldPeak serum troponin levelsUrban academic medical centerStudy periodLarge urban academic medical centerTransthoracic echocardiography findingsPresence of PERight ventricular abnormalitiesChronic pulmonary emboliSerum troponin levelsMultivariate logistic regressionAcademic medical centerEchocardiography findingsTroponin levelsAdult patientsVentricular abnormalitiesEmergency departmentDisease spectrumRV abnormalitiesMedical CenterSevere spectrumDisease severity
2010
Multiple Testing, Cumulative Radiation Dose, and Clinical Indications in Patients Undergoing Myocardial Perfusion Imaging
Einstein AJ, Weiner SD, Bernheim A, Kulon M, Bokhari S, Johnson LL, Moses JW, Balter S. Multiple Testing, Cumulative Radiation Dose, and Clinical Indications in Patients Undergoing Myocardial Perfusion Imaging. JAMA 2010, 304: 2137-2144. PMID: 21078807, PMCID: PMC3667407, DOI: 10.1001/jama.2010.1664.Peer-Reviewed Original ResearchConceptsMyocardial perfusion imagingRadiation burdenEffective doseClinical indicationsEffective dosesColumbia University Medical CenterRetrospective cohort studyHigh radiation burdenUniversity Medical CenterCumulative radiation doseMultiple testingHigh-dose proceduresNumber of proceduresCohort studyConsecutive patientsWhite patientsDoses of radiationMedical CenterCardiac diseaseMyocardial perfusionPatientsPerfusion imagingUS populationAdditional proceduresSubsequent procedures