2024
Deciphering the effects of radiopharmaceutical therapy in the tumor microenvironment of prostate cancer: an in-silico exploration with spatial transcriptomics
Hong J, Bae S, Cavinato L, Seifert R, Ryhiner M, Rominger A, Erlandsson K, Wilks M, Normandin M, El-Fakhri G, Choi H, Shi K. Deciphering the effects of radiopharmaceutical therapy in the tumor microenvironment of prostate cancer: an in-silico exploration with spatial transcriptomics. Theranostics 2024, 14: 7122-7139. DOI: 10.7150/thno.99516.Peer-Reviewed Original ResearchRadiomics-driven personalized radiotherapy for primary and recurrent tumors: A general review with a focus on reirradiation
Beddok A, Orlhac F, Rozenblum L, Calugaru V, Créhange G, Dercle L, Nioche C, Thariat J, Marin T, El Fakhri G, Buvat I. Radiomics-driven personalized radiotherapy for primary and recurrent tumors: A general review with a focus on reirradiation. Cancer/Radiothérapie 2024, 28: 597-602. PMID: 39406602, DOI: 10.1016/j.canrad.2024.09.002.Peer-Reviewed Original ResearchPersonalized radiotherapyTumor localizationTreatment planningMedian AUCImaging modalitiesRisk of recurrenceHead and neckImprove treatment precisionPredicting clinical outcomesOptimal treatment planQuantitative imaging biomarkersRecurrent tumorsApplication of radiomicsRecurrent cancerClinical radiotherapyExternal validationClinical outcomesRadiotherapyReirradiationLack of external validationMEDLINE searchTreatment precisionImaging biomarkersImaging protocolTumor
2021
High-Resolution Label-Free Molecular Imaging of Brain Tumor
Guo R, Ma C, Li Y, Zhao Y, Wang T, Li Y, Fakhri G, Liang Z. High-Resolution Label-Free Molecular Imaging of Brain Tumor. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2021, 00: 3049-3052. PMID: 34891886, DOI: 10.1109/embc46164.2021.9630623.Peer-Reviewed Original ResearchConceptsMagnetic resonance spectroscopic imagingBrain tumorsIntra-tumoural metabolic heterogeneityAssessment of treatment efficacySmall-sized tumorsClinical applicationN-acetyl aspartateBrain tumor characterizationPotential clinical applicationsApplication of magnetic resonance spectroscopic imagingTumor characterizationMolecular imaging techniquesBrain metabolitesImaging of brain tumorsTumorTreatment efficacyClinical relevanceMetabolic imagingDiagnosed brain tumorsHigh-resolution metabolic imagingMetabolic heterogeneityTumor detectionMolecular imaging of brain tumorsLabel-free molecular imagingLabel-free molecular imaging techniquePersonalised, image-guided, noninvasive brain stimulation in gliomas: Rationale, challenges and opportunities
Sprugnoli G, Rossi S, Rotenberg A, Pascual-Leone A, El-Fakhri G, Golby A, Santarnecchi E. Personalised, image-guided, noninvasive brain stimulation in gliomas: Rationale, challenges and opportunities. EBioMedicine 2021, 70: 103514. PMID: 34391090, PMCID: PMC8365310, DOI: 10.1016/j.ebiom.2021.103514.Peer-Reviewed Original ResearchConceptsHigh-grade gliomasNeuronal activityBrain tumorsProximity of tumor cellsSlow tumor growthAggressive human cancersMalignant brain tumorsBrain stimulationTumor mitosisHealthy brain tissuePatient survivalMechanism of actionImage-guidedTumor cellsTumor growthSynaptic activityHuman cancersTumorTherapeutic interventionsClinical settingNoninvasive brain stimulationElectrical stimulationWhole-brain levelPatientsBrain tissue
2018
[18F]Fluorocholine and [18F]Fluoroacetate PET as Imaging Biomarkers to Assess Phosphatidylcholine and Mitochondrial Metabolism in Preclinical Models of TSC and LAM
Verwer E, Kavanagh T, Mischler W, Feng Y, Takahashi K, Wang S, Shoup T, Neelamegam R, Yang J, Guehl N, Ran C, Massefski W, Cui Y, El-Chemaly S, Sadow P, Oldham W, Kijewski M, Fakhri G, Normandin M, Priolo C. [18F]Fluorocholine and [18F]Fluoroacetate PET as Imaging Biomarkers to Assess Phosphatidylcholine and Mitochondrial Metabolism in Preclinical Models of TSC and LAM. Clinical Cancer Research 2018, 24: 5925-5938. PMID: 30054282, PMCID: PMC6816044, DOI: 10.1158/1078-0432.ccr-17-3693.Peer-Reviewed Original ResearchMeSH KeywordsAgedAnimalsBiomarkersCholineDisease Models, AnimalFemaleFluoroacetatesHeterograftsHumansImage Processing, Computer-AssistedImmunohistochemistryLipid MetabolismLymphangioleiomyomatosisMaleMiceMice, TransgenicMitochondriaOxygen ConsumptionPhosphatidylcholinesPositron-Emission TomographyRatsTuberous SclerosisConceptsTuberous sclerosis complexMetabolic imaging biomarkersPreclinical modelsImaging biomarkersTSC2-deficient cellsStandardized uptake valueTuberous sclerosis complex manifestationsModels of tuberous sclerosis complexAutosomal dominant disorderPotential clinical interestBenign tumorsOvariectomized miceUptake valueSubcutaneous tumorsPreclinical studiesPulmonary nodulesCystic destructionLymphangioleiomyomatosisDominant disorderProliferative lesionsInactivating mutationsTumorMetabolic reprogrammingNeurocognitive impairmentPET imagingSubject-specific brain tumor growth modelling via an efficient Bayesian inference framework
Chang Y, Sharp G, Li Q, Shih H, El Fakhri G, Ra J, Woo J. Subject-specific brain tumor growth modelling via an efficient Bayesian inference framework. Proceedings Of SPIE--the International Society For Optical Engineering 2018, 10574: 105742i. PMID: 30050231, PMCID: PMC6056378, DOI: 10.1117/12.2293145.Peer-Reviewed Original ResearchTumor growthOptimal treatmentExternal beam radiotherapyBrain tumor progressionBeam radiotherapyBrain tumor growthTumor growth modelTumor infiltrationTumor parametersTumor progressionEffective therapyClinical dataTherapy planningTumorIndividualized therapyTherapyTumor boundariesProliferation rateRadiotherapyNon-invasiveState-of-the-art methodsTreatmentState-of-the-artChemotherapy
2016
Renal Clearable Organic Nanocarriers for Bioimaging and Drug Delivery
Kang H, Gravier J, Bao K, Wada H, Lee J, Baek Y, Fakhri G, Gioux S, Rubin B, Coll J, Choi H. Renal Clearable Organic Nanocarriers for Bioimaging and Drug Delivery. Advanced Materials 2016, 28: 8162-8168. PMID: 27414255, PMCID: PMC5155334, DOI: 10.1002/adma.201601101.Peer-Reviewed Original Research
2015
Imaging PEG-Like Nanoprobes in Tumor, Transient Ischemia, and Inflammatory Disease Models
Wilks M, Normandin M, Yuan H, Cho H, Guo Y, Herisson F, Ayata C, Wooten D, Fakhri G, Josephson L. Imaging PEG-Like Nanoprobes in Tumor, Transient Ischemia, and Inflammatory Disease Models. Bioconjugate Chemistry 2015, 26: 1061-1069. PMID: 25971846, PMCID: PMC5378316, DOI: 10.1021/acs.bioconjchem.5b00213.Peer-Reviewed Original Research
2013
Simultaneous 99mTc‐MDP/123I‐MIBG tumor imaging using SPECT‐CT: Phantom and constructed patient studies
Rakvongthai Y, Fakhri G, Lim R, Bonab A, Ouyang J. Simultaneous 99mTc‐MDP/123I‐MIBG tumor imaging using SPECT‐CT: Phantom and constructed patient studies. Medical Physics 2013, 40: 102506. PMID: 24089927, PMCID: PMC3785531, DOI: 10.1118/1.4820977.Peer-Reviewed Original ResearchConceptsScatter correctionDual-radionuclideContrast recoveryPhantom studyAnthropomorphic torso phantomPatient studiesTumor uptakeTumor imagingSPECT projectionsTorso phantomMonte-CarloPhantom dataPhantomIterative reconstructionOSEMProjection dataDR dataIncrease patient throughputNoise realizationsSPECT-CTImage reconstructionClinical studiesTumorTumor projectionPoisson noise
2001
Comparative Assessment of Energy-Based Methods of Compensating for Scatter and Lead X-Rays in Ga-67 SPECT Imaging
Moore S, Fakhri G, Maksud P. Comparative Assessment of Energy-Based Methods of Compensating for Scatter and Lead X-Rays in Ga-67 SPECT Imaging. 2001, 4: 2197-2198. DOI: 10.1109/nssmic.2001.1009260.Peer-Reviewed Original ResearchLead X-raysGa-67Energy windowArtificial neural networkGa-67 SPECT imagingSPECT imagesHigh-energy contaminationGa-67 SPECTPoisson noise realizationsActivity estimation taskTumor activity concentrationAnthropomorphic phantomEvaluable tumorsGS methodTumorMean square errorData setsOrgan uptakeProjection imagesLymphoma studiesNeural networkPixel valuesX-raySpherical tumorNoise realizations