2023
Recent Advances in DNA Origami-Engineered Nanomaterials and Applications
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chemical Reviews 2023, 123: 3976-4050. PMID: 36990451, PMCID: PMC10103138, DOI: 10.1021/acs.chemrev.3c00028.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDNA origami techniquePaul RothemundDNA nanotechnologyOrigami techniqueExciting achievementsNanomaterialsMaterials scienceRecent progressRecent advancesNanotechnologyUseful applicationsApplicationsRothemundSignificant advancesUnexplored research avenuesOriginal proposalFieldPhysicsMathematicsEngineeringAdvancesUnique field
2021
DNA-Origami NanoTrap for Studying the Selective Barriers Formed by Phenylalanine-Glycine-Rich Nucleoporins
Shen Q, Tian T, Xiong Q, Fisher P, Xiong Y, Melia TJ, Lusk CP, Lin C. DNA-Origami NanoTrap for Studying the Selective Barriers Formed by Phenylalanine-Glycine-Rich Nucleoporins. Journal Of The American Chemical Society 2021, 143: 12294-12303. PMID: 34324340, PMCID: PMC8363578, DOI: 10.1021/jacs.1c05550.Peer-Reviewed Original ResearchConceptsNuclear pore complexFundamental biological activitiesRich nucleoporinsNuclear transport receptorsSelective barrierPhenylalanine-GlycineStructure-function relationshipsPore complexNuclear transportTransport receptorsProtein assembliesFG-NupsMolecular trafficFG interactionsFG networkBiomolecular machinesNucleoporinsCritical determinantDNA nanotechnologyBiomimetic constructsBiological activityDiffusion barrierModel cargoNanotrapsSpatial arrangement
2019
Engineering Lipid Membranes with Programmable DNA Nanostructures
Shen Q, Grome MW, Yang Y, Lin C. Engineering Lipid Membranes with Programmable DNA Nanostructures. Advanced Biology 2019, 4 PMID: 31934608, PMCID: PMC6957268, DOI: 10.1002/adbi.201900215.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDNA nanostructuresProgrammable DNA nanostructuresGenetic informationLipid membranesCell's genetic informationAmphipathic lipid moleculesLipid/DNA complexesSelf-assembling capabilitiesDNA-based toolsQuantitative biophysical studiesNanoscopic precisionProgrammable nanostructuresControllable structureHybrid materialsChromatin structureGene therapyNanostructuresDistant moleculesSynthetic biologyAbundant biomoleculesLipid moleculesBiophysical studiesDNA complexesExcellent materialCell nucleiStiffness and Membrane Anchor Density Modulate DNA-Nanospring-Induced Vesicle Tubulation
Grome MW, Zhang Z, Lin C. Stiffness and Membrane Anchor Density Modulate DNA-Nanospring-Induced Vesicle Tubulation. ACS Applied Materials & Interfaces 2019, 11: 22987-22992. PMID: 31252462, PMCID: PMC6613048, DOI: 10.1021/acsami.9b05401.Peer-Reviewed Original ResearchConceptsVesicle tubulationMembrane-deforming proteinsDNA-based constructsMembrane anchorArtificial assemblageMembrane bindingSubcellular membranesDNA nanostructuresMembrane affinityTubulationLipid tubulesMembraneDNA nanotechnologyTunable architecturesPeptide densitySurface of liposomesProteinNanostructuresAssemblagesBindingAffinity
2018
Modulation of the Cellular Uptake of DNA Origami through Control over Mass and Shape
Bastings MMC, Anastassacos FM, Ponnuswamy N, Leifer FG, Cuneo G, Lin C, Ingber DE, Ryu JH, Shih WM. Modulation of the Cellular Uptake of DNA Origami through Control over Mass and Shape. Nano Letters 2018, 18: 3557-3564. PMID: 29756442, DOI: 10.1021/acs.nanolett.8b00660.Peer-Reviewed Original ResearchConceptsDNA nanotechnologyStructural DNA nanotechnologyThree-dimensional nanostructuresCellular uptakeDNA origami shapesDesigner nanoparticlesNanoparticle uptakeDNA origamiCell delivery vehicleTherapeutic deliveryAttractive platformCell uptakeNanotechnologyNanoparticlesGreater compactnessDifferent cell linesUnparalleled abilityNanostructuresResolution featuresLarge particlesLimited controlParticle shapeOrigamiRatio particlesParticlesVesicle Tubulation with Self‐Assembling DNA Nanosprings
Grome MW, Zhang Z, Pincet F, Lin C. Vesicle Tubulation with Self‐Assembling DNA Nanosprings. Angewandte Chemie International Edition 2018, 57: 5330-5334. PMID: 29575478, PMCID: PMC5924453, DOI: 10.1002/anie.201800141.Peer-Reviewed Original ResearchMeSH KeywordsDNALipid BilayersMicroscopy, FluorescenceNanostructuresNanotechnologyNucleic Acid ConformationPolymerizationConceptsMembrane-deforming proteinsDNA origami designMembrane tubulationMembrane tubulesMembrane curvatureMembrane surface coverageVesicle tubulationDNA structureLipid bilayersTubulationNanospringsTube morphologyIntricate interplayArtificial nanomachinesVesicle deformationSpherical vesiclesNanotechnologyMajor goalProteinDNAVesiclesNanomachinesBioengineeringDetergentsMorphologyA Programmable DNA Origami Platform for Organizing Intrinsically Disordered Nucleoporins within Nanopore Confinement
Fisher PDE, Shen Q, Akpinar B, Davis LK, Chung KKH, Baddeley D, Šarić A, Melia TJ, Hoogenboom BW, Lin C, Lusk CP. A Programmable DNA Origami Platform for Organizing Intrinsically Disordered Nucleoporins within Nanopore Confinement. ACS Nano 2018, 12: 1508-1518. PMID: 29350911, PMCID: PMC5834394, DOI: 10.1021/acsnano.7b08044.Peer-Reviewed Original ResearchConceptsTransport channelsAtomic force microscopyMolecular dynamics simulationsHigh-speed atomic force microscopyDNA origami platformFG domainsNuclear pore complexes (NPCs) formChannel mimicsCentral transport channelNuclear pore proteinsForce microscopyDNA origamiNuclear transport receptorsDynamics simulationsSelective transportNanopore confinementMolecular exchangePermeability propertiesDNA cylindersChemical compositionFG networkPore proteinsPolymer modelTransport receptorsCollective properties
2017
Directing reconfigurable DNA nanoarrays
Yang Y, Lin C. Directing reconfigurable DNA nanoarrays. Science 2017, 357: 352-353. PMID: 28751594, DOI: 10.1126/science.aao0599.Commentaries, Editorials and LettersDNANanotechnology
2011
Synthesis and Characterization of Self-Assembled DNA Nanostructures
Lin C, Ke Y, Chhabra R, Sharma J, Liu Y, Yan H. Synthesis and Characterization of Self-Assembled DNA Nanostructures. Methods In Molecular Biology 2011, 749: 1-11. PMID: 21674361, DOI: 10.1007/978-1-61779-142-0_1.ChaptersConceptsDNA nanostructuresDNA nanotechnologySelf-assembled DNA nanostructuresSuch nanoscale objectsStructural DNA nanotechnologyCharacterization of SelfDNA-based nanodevicesExcellent yieldsNanoscale objectsNanostructuresArtificial nanostructuresMolecular speciesBuilding blocksNanotechnologyFast evolvementMain building blocksNanoarchitecturesLarge varietySynthesisMaterialsNanodevicesPreparationCharacterizationBuilding materialsYield
2010
Knitting complex weaves with DNA origami
Shih WM, Lin C. Knitting complex weaves with DNA origami. Current Opinion In Structural Biology 2010, 20: 276-282. PMID: 20456942, PMCID: PMC2916953, DOI: 10.1016/j.sbi.2010.03.009.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2009
A cascade of activity
Lin C, Yan H. A cascade of activity. Nature Nanotechnology 2009, 4: 211-212. PMID: 19350024, DOI: 10.1038/nnano.2009.66.Commentaries, Editorials and LettersDesigner DNA Nanoarchitectures
Lin C, Liu Y, Yan H. Designer DNA Nanoarchitectures. Biochemistry 2009, 48: 1663-1674. PMID: 19199428, PMCID: PMC2765550, DOI: 10.1021/bi802324w.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsStructural DNA nanotechnologyDNA nanotechnologyDNA nanoarchitecturesSelf-assembled architecturesWatson-Crick base pairing rulesProtein-protein interactionsBase pairing rulesDNA nanostructuresMulticomponent nanomachinesPrinciples of DNAArtificial nanostructuresNanometer precisionHelical DNA structureUnicellular diatomsFunctional groupsDNA structureNanotechnologyNanostructuresMolecular speciesNanoarchitecturesSuch eleganceExciting progressHigh yieldsBiological systemsDNA
2008
Mirror Image DNA Nanostructures for Chiral Supramolecular Assemblies
Lin C, Ke Y, Li Z, Wang JH, Liu Y, Yan H. Mirror Image DNA Nanostructures for Chiral Supramolecular Assemblies. Nano Letters 2008, 9: 433-436. PMID: 19063615, PMCID: PMC2669104, DOI: 10.1021/nl803328v.Peer-Reviewed Original ResearchConceptsChiral supramolecular assembliesStructural DNA nanotechnologyNatural d-DNACircular dichroism spectraSupramolecular assembliesDNA supramoleculesAtomic force microscopeDNA nanostructuresDNA nanotechnologyL-DNADichroism spectraVivo medical applicationsNuclease resistanceForce microscopePolyacrylamide gel electrophoresisOpposite chiralityNanostructuresD-DNAPeriodic nanostructuresMedical applicationsSupramoleculesGel electrophoresisSubstantial complementChiralityNanotechnologySignal amplification on a DNA-tile-based biosensor with enhanced sensitivity
Lin C, Nangreave JK, Li Z, Liu Y, Yan H. Signal amplification on a DNA-tile-based biosensor with enhanced sensitivity. Nanomedicine 2008, 3: 521-528. PMID: 18694314, DOI: 10.2217/17435889.3.4.521.Peer-Reviewed Original ResearchConceptsHybridization chain reactionSignal amplificationSelf-assembled DNAMultiplexed biosensingFluorescence enhancementNanomedical applicationsSensitive detectionDetection probeConfocal fluorescence microscopySignal amplifierImprovement of sensitivityDetection sensitivityOrders of magnitudeEnhanced sensitivityBiosensorBiosensingFluorescence microscopyNanoarraysSuccessful detectionReactionMicroscopyVersatilityDetection targetProbeDetection
2007
Rolling Circle Enzymatic Replication of a Complex Multi-Crossover DNA Nanostructure
Lin C, Wang X, Liu Y, Seeman NC, Yan H. Rolling Circle Enzymatic Replication of a Complex Multi-Crossover DNA Nanostructure. Journal Of The American Chemical Society 2007, 129: 14475-14481. PMID: 17963390, PMCID: PMC3319872, DOI: 10.1021/ja0760980.Peer-Reviewed Original ResearchFunctional DNA Nanotube Arrays: Bottom‐Up Meets Top‐Down
Lin C, Ke Y, Liu Y, Mertig M, Gu J, Yan H. Functional DNA Nanotube Arrays: Bottom‐Up Meets Top‐Down. Angewandte Chemie International Edition 2007, 46: 6089-6092. PMID: 17628475, PMCID: PMC2094123, DOI: 10.1002/anie.200701767.Peer-Reviewed Original ResearchSelf-Assembled Combinatorial Encoding Nanoarrays for Multiplexed Biosensing
Lin C, Liu Y, Yan H. Self-Assembled Combinatorial Encoding Nanoarrays for Multiplexed Biosensing. Nano Letters 2007, 7: 507-512. PMID: 17298017, PMCID: PMC1963466, DOI: 10.1021/nl062998n.Peer-Reviewed Original ResearchConceptsDifferent molecular probesMultiplexed biosensingNucleic acid probesSensitive detectionMolecular probesMultiplexed detectionAcid probesDNA hybridizationBinding reactionNucleic acidsFluorescent dyeInterprobe distanceDisease diagnosticsSensor platformMoleculesMultiple DNA sequencesTwo-dimensional arraySmall amountBioconjugationBiosensingNanoarraysAptamerDyeProbeNanotiles
2006
Rolling‐Circle Amplification of a DNA Nanojunction
Lin C, Xie M, Chen JJ, Liu Y, Yan H. Rolling‐Circle Amplification of a DNA Nanojunction. Angewandte Chemie International Edition 2006, 45: 7537-7539. PMID: 17048296, DOI: 10.1002/anie.200602113.Peer-Reviewed Original ResearchDNA Tile Based Self‐Assembly: Building Complex Nanoarchitectures
Lin C, Liu Y, Rinker S, Yan H. DNA Tile Based Self‐Assembly: Building Complex Nanoarchitectures. ChemPhysChem 2006, 7: 1641-1647. PMID: 16832805, DOI: 10.1002/cphc.200600260.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsDNA tilesSelf-assembled DNA nanostructuresNanometer-scale materialsNanometer-scale componentsComplex nanoarchitecturesDNA nanostructuresNanophotonic devicesAttractive routeExcellent scaffoldProgrammable patternsNanoarchitecturesPotential applicationsExciting progressNanoarraysNanoparticlesNanostructuresRecent developmentsScaffoldsDevicesRouteMaterials