2023
Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants
Moriyama M, Lucas C, Monteiro V, Initiative Y, Iwasaki A, Chen N, Breban M, Hahn A, Pham K, Koch T, Chaguza C, Tikhonova I, Castaldi C, Mane S, De Kumar B, Ferguson D, Kerantzas N, Peaper D, Landry M, Schulz W, Vogels C, Grubaugh N. Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2221652120. PMID: 37036977, PMCID: PMC10120007, DOI: 10.1073/pnas.2221652120.Peer-Reviewed Original ResearchMeSH KeywordsAntibodies, NeutralizingAntibodies, ViralBreakthrough InfectionsCOVID-19HumansReinfectionSARS-CoV-2Spike Glycoprotein, CoronavirusConceptsMHC-I expressionBreakthrough infectionsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variantsMajor histocompatibility complex class I expressionCell-mediated immunityInfluenza virus infectionSARS-CoV-2 VOCsMHC-I upregulationClass I expressionSARS-CoV-2T cell recognitionVirus infectionMHC II expressionSpike proteinEnhanced inhibitionInfectionCell recognitionCommon mutationsReinfectionE proteinAntibodiesViral genesSubvariantsExpressionSARS-CoV-2 mRNA vaccines decouple anti-viral immunity from humoral autoimmunity
Jaycox J, Lucas C, Yildirim I, Dai Y, Wang E, Monteiro V, Lord S, Carlin J, Kita M, Buckner J, Ma S, Campbell M, Ko A, Omer S, Lucas C, Speake C, Iwasaki A, Ring A. SARS-CoV-2 mRNA vaccines decouple anti-viral immunity from humoral autoimmunity. Nature Communications 2023, 14: 1299. PMID: 36894554, PMCID: PMC9996559, DOI: 10.1038/s41467-023-36686-8.Peer-Reviewed Original ResearchConceptsVaccine-associated myocarditisAutoimmune patientsAutoantibody reactivitySARS-CoV-2 mRNA vaccinationVaccine-related adverse effectsSARS-CoV-2 immunitySARS-CoV-2 infectionAcute COVID-19Development of autoantibodiesCOVID-19 patientsAnti-viral immunityVirus-specific antibodiesCOVID-19 vaccineCOVID-19Humoral autoimmunityMRNA vaccinationAutoantibody responsePost vaccinationAutoantibody developmentAutoimmune diseasesHumoral responseHealthy individualsPatientsAntigen profilingAdverse effects
2022
No evidence of fetal defects or anti-syncytin-1 antibody induction following COVID-19 mRNA vaccination
Lu-Culligan A, Tabachnikova A, Pérez-Then E, Tokuyama M, Lee HJ, Lucas C, Monteiro V, Miric M, Brache V, Cochon L, Muenker MC, Mohanty S, Huang J, Kang I, Dela Cruz C, Farhadian S, Campbell M, Yildirim I, Shaw AC, Ma S, Vermund SH, Ko AI, Omer SB, Iwasaki A. No evidence of fetal defects or anti-syncytin-1 antibody induction following COVID-19 mRNA vaccination. PLOS Biology 2022, 20: e3001506. PMID: 35609110, PMCID: PMC9129011, DOI: 10.1371/journal.pbio.3001506.Peer-Reviewed Original ResearchConceptsCOVID-19 mRNA vaccinationMRNA vaccinationEarly pregnancyFetal sizeCoronavirus disease 2019 (COVID-19) mRNA vaccinationSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Maternal antibody statusAdverse neonatal outcomesSyndrome coronavirus 2Birth defectsPolyinosinic-polycytidylic acidCrown-rump lengthGross birth defectsUnvaccinated adultsMaternal illnessNeonatal outcomesVaccinated adultsAntibody statusTLR3 agonistEarly immunizationMurine pregnancyAntibody inductionCoronavirus 2Development and utilization of a surrogate SARS-CoV-2 viral neutralization assay to assess mRNA vaccine responses
Wisnewski AV, Liu J, Lucas C, Klein J, Iwasaki A, Cantley L, Fazen L, Luna J, Slade M, Redlich CA. Development and utilization of a surrogate SARS-CoV-2 viral neutralization assay to assess mRNA vaccine responses. PLOS ONE 2022, 17: e0262657. PMID: 35041700, PMCID: PMC8765639, DOI: 10.1371/journal.pone.0262657.Peer-Reviewed Original ResearchConceptsPlaque reduction neutralization testCOVID-19 patientsVaccine responsesRecovered COVID-19 patientsSARS-CoV-2 immunityBooster vaccine dosesMRNA vaccine responsePost-vaccine seraCompetitive ELISAEnzyme 2 (ACE2) receptorReduction neutralization testType of vaccineSARS-CoV-2 spike protein receptorSpike protein receptorVaccine seraVaccine recipientsPost vaccinationVaccinated individualsVaccine dosesViral culturePrior historyViral neutralizationNeutralization testBooster shotsPost vaccine
2021
Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity
Lucas C, Vogels CBF, Yildirim I, Rothman JE, Lu P, Monteiro V, Gehlhausen JR, Campbell M, Silva J, Tabachnikova A, Peña-Hernandez MA, Muenker MC, Breban MI, Fauver JR, Mohanty S, Huang J, Shaw A, Ko A, Omer S, Grubaugh N, Iwasaki A. Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity. Nature 2021, 600: 523-529. PMID: 34634791, PMCID: PMC9348899, DOI: 10.1038/s41586-021-04085-y.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 variantsMRNA vaccine-induced immunityT-cell activation markersSARS-CoV-2 antibodiesSecond vaccine doseVaccine-induced immunityCell activation markersT cell responsesHigh antibody titresSARS-CoV-2Vaccine boosterVaccine doseActivation markersVaccine dosesHumoral immunityAntibody titresMRNA vaccinesVitro stimulationNeutralization capacityNeutralization responseCell responsesE484KNucleocapsid peptideAntibody-binding sitesGreater reductionAssociations of SARS-CoV-2 serum IgG with occupation and demographics of military personnel
Zell J, Wisnewski AV, Liu J, Klein J, Lucas C, Slade M, Iwasaki A, Redlich CA. Associations of SARS-CoV-2 serum IgG with occupation and demographics of military personnel. PLOS ONE 2021, 16: e0251114. PMID: 34460832, PMCID: PMC8405017, DOI: 10.1371/journal.pone.0251114.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Live SARS-CoV-2Moderate SARS-CoV-2SARS-CoV-2 seroprevalenceWork-related risk factorsTransportation-related occupationsSerum IgG levelsAntigen-specific IgGIgG seropositivity rateBiomarkers of infectionSARS-CoV-2 spikeCOVID-19 exposureUS National Guard soldiersMilitary personnelIgG levelsSeropositivity rateHumoral responseSerum IgGViral exposureBlack raceRisk factorsOdds ratioStudy populationNational Guard soldiersDemographic data
2018
Critical role of CD4+ T cells and IFNγ signaling in antibody-mediated resistance to Zika virus infection
Lucas CGO, Kitoko JZ, Ferreira FM, Suzart VG, Papa MP, Coelho SVA, Cavazzoni CB, Paula-Neto HA, Olsen PC, Iwasaki A, Pereira RM, Pimentel-Coelho PM, Vale AM, de Arruda LB, Bozza MT. Critical role of CD4+ T cells and IFNγ signaling in antibody-mediated resistance to Zika virus infection. Nature Communications 2018, 9: 3136. PMID: 30087337, PMCID: PMC6081430, DOI: 10.1038/s41467-018-05519-4.Peer-Reviewed Original ResearchConceptsT cellsZika virusMurine adoptive transfer modelParticipation of CD4Adoptive transfer modelT cell responsesImportance of CD4Protective adaptive immunityRapid disease onsetZika virus infectionFuture vaccine designAntibody-mediated resistanceCytotoxic CD8Viral loadZIKV infectionAntibody responsePrimary infectionRecipient miceDisease onsetVirus infectionProtective effectAdaptive immunityIFNγ signalingCD4B lymphocytes