2022
Neural circuit pathology driven by Shank3 mutation disrupts social behaviors
Kim S, Kim YE, Song I, Ujihara Y, Kim N, Jiang YH, Yin HH, Lee TH, Kim IH. Neural circuit pathology driven by Shank3 mutation disrupts social behaviors. Cell Reports 2022, 39: 110906. PMID: 35675770, PMCID: PMC9210496, DOI: 10.1016/j.celrep.2022.110906.Peer-Reviewed Original ResearchConceptsAutism spectrum disorderAlters spine morphologyWild-type miceExcitatory-inhibitory balanceSocial dysfunctionHuman ASD patientsMultiple brain regionsSocial behaviorElevated neural activityCircuit pathologyPathogenic mechanismsSHANK3 mutationsCircuit inhibitionBrain regionsCircuit activationNeural network mechanismReduced sociabilitySpine morphologyCore symptomsASD patientsPrefrontal cortexMiceSHANK3 geneNeural activitySpectrum disorder
2021
Mutations of the histone linker H1–4 in neurodevelopmental disorders and functional characterization of neurons expressing C-terminus frameshift mutant H1.4
Tremblay MW, Green MV, Goldstein BM, Aldridge AI, Rosenfeld JA, Streff H, Tan WD, Craigen W, Bekheirnia N, Al Tala S, West AE, Jiang YH. Mutations of the histone linker H1–4 in neurodevelopmental disorders and functional characterization of neurons expressing C-terminus frameshift mutant H1.4. Human Molecular Genetics 2021, 31: 1430-1442. PMID: 34788807, PMCID: PMC9271223, DOI: 10.1093/hmg/ddab321.Peer-Reviewed Original ResearchConceptsC-terminusGenome-wide transcriptome analysisRahman syndromeUnderstanding of mutationsHistone H1.4Neuronal genesTranscriptome analysisAbnormal C-terminusFunctional categoriesFunctional characterizationNeuropeptide signalingN-terminusDe novo heterozygous mutationsSupport of pathogenicitySmall insertionsFunctional consequencesNovo heterozygous mutationRat hippocampal neuronsFrameshift mutationMutationsH1.4Rare genetic disorderSevere intellectual disabilityGenesClinical featuresTET1-mediated DNA hydroxymethylation regulates adult remyelination in mice
Moyon S, Frawley R, Marechal D, Huang D, Marshall-Phelps KLH, Kegel L, Bøstrand SMK, Sadowski B, Jiang YH, Lyons DA, Möbius W, Casaccia P. TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice. Nature Communications 2021, 12: 3359. PMID: 34099715, PMCID: PMC8185117, DOI: 10.1038/s41467-021-23735-3.Peer-Reviewed Original ResearchConceptsDNA hydroxymethylationSolute carrier gene familyNeuro-glial communicationZebrafish mutantsGene familyTranscriptomic analysisMyelin interfaceTen-ElevenAdult central nervous systemCentral nervous systemTET1Overexpressing cellsAdult remyelinationExpression levelsMutantsHydroxymethylationGenesNervous systemRepairMyelin repairTransportersKnockoutMiceRegulationAged mice
2019
Neurodevelopmental mutation of giant ankyrin-G disrupts a core mechanism for axon initial segment assembly
Yang R, Walder-Christensen KK, Lalani S, Yan H, García-Prieto ID, Álvarez S, Fernández-Jaén A, Speltz L, Jiang YH, Bennett V. Neurodevelopmental mutation of giant ankyrin-G disrupts a core mechanism for axon initial segment assembly. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 19717-19726. PMID: 31451636, PMCID: PMC6765234, DOI: 10.1073/pnas.1909989116.Peer-Reviewed Original ResearchConceptsΒ4-spectrinAxon initial segmentC-terminal domainNormal neural developmentPrevents recruitmentGiant ankyrinNeural developmentConformational changesMissense mutationsMutationsPhosphorylationSegment assemblyRecruitmentMouse brainClose appositionCore mechanismDomainAssemblyAnkyrinClosed configurationIntermediate stageInitial segmentSitesProximal axonsANK2 autism mutation targeting giant ankyrin-B promotes axon branching and ectopic connectivity
Yang R, Walder-Christensen KK, Kim N, Wu D, Lorenzo DN, Badea A, Jiang YH, Yin HH, Wetsel WC, Bennett V. ANK2 autism mutation targeting giant ankyrin-B promotes axon branching and ectopic connectivity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 15262-15271. PMID: 31285321, PMCID: PMC6660793, DOI: 10.1073/pnas.1904348116.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAnimalsAnkyrinsAutism Spectrum DisorderBehavior, AnimalCell MembraneConnectomeDisease Models, AnimalExecutive FunctionGene ExpressionGene Knock-In TechniquesHumansMaleMiceMice, TransgenicMicrotubulesMutationNeural Cell Adhesion Molecule L1Neuronal OutgrowthNeuronsPrimary Cell CultureSocial BehaviorSynapses
2018
Epigenetic dysregulation of Oxtr in Tet1-deficient mice has implications for neuropsychiatric disorders
Towers AJ, Tremblay MW, Chung L, Li XL, Bey AL, Zhang W, Cao X, Wang X, Wang P, Duffney LJ, Siecinski SK, Xu S, Kim Y, Kong X, Gregory S, Xie W, Jiang YH. Epigenetic dysregulation of Oxtr in Tet1-deficient mice has implications for neuropsychiatric disorders. JCI Insight 2018, 3: e120592. PMID: 30518695, PMCID: PMC6328031, DOI: 10.1172/jci.insight.120592.Peer-Reviewed Original ResearchGenomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing
Wu J, Yu P, Jin X, Xu X, Li J, Li Z, Wang M, Wang T, Wu X, Jiang Y, Cai W, Mei J, Min Q, Xu Q, Zhou B, Guo H, Wang P, Zhou W, Hu Z, Li Y, Cai T, Wang Y, Xia K, Jiang YH, Sun ZS. Genomic landscapes of Chinese sporadic autism spectrum disorders revealed by whole-genome sequencing. Journal Of Genetics And Genomics 2018, 45: 527-538. PMID: 30392784, DOI: 10.1016/j.jgg.2018.09.002.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsAdolescentAdultAsian PeopleAutism Spectrum DisorderCell Cycle ProteinsChildChild, PreschoolChinaDNA Copy Number VariationsDNA-Binding ProteinsFemaleGenetic Predisposition to DiseaseHumansMaleMutationNerve Tissue ProteinsTranscription FactorsWhole Genome SequencingYoung AdultConceptsChromosomal rearrangement eventsDe novo chromosomal translocationsGenomic structural variantsNovo chromosomal translocationWhole genome sequencing datasetsFull genetic spectrumRare deleterious variantsChromosomal structure analysisHigh mutation rateSporadic autism spectrum disordersWhole-genome sequencingChromatin remodelingCentrosomal functionWhole genomeRare inherited mutationsDe novo mutationsRearrangement eventsSequencing datasetsDeleterious variantsGenomic variantsMutation rateStructural variantsGenomic landscapeNovo CNVsRisk genesCRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms
Tu Z, Zhao H, Li B, Yan S, Wang L, Tang Y, Li Z, Bai D, Li C, Lin Y, Li Y, Liu J, Xu H, Guo X, Jiang YH, Zhang YQ, Li XJ. CRISPR/Cas9-mediated disruption of SHANK3 in monkey leads to drug-treatable autism-like symptoms. Human Molecular Genetics 2018, 28: 561-571. PMID: 30329048, PMCID: PMC6489410, DOI: 10.1093/hmg/ddy367.Peer-Reviewed Original ResearchConceptsAutism spectrum disorderCynomolgus monkey modelAutism-like symptomsPathogenesis of ASDPostsynaptic scaffold proteinsNon-human primatesFluoxetine treatmentBrain network activityMonkey modelMouse modelBehavioral abnormalitiesCausative roleExperimental therapeuticsSHANK3 mutationsBrain structuresSHANK3 geneTranslational researchMonogenic mutationsBrain activitySpecies-dependent differencesPositron emissionNetwork activityCRISPR/Cas9-mediated disruptionMonkeysSpectrum disorderFurther evidence for the involvement of EFL1 in a Shwachman–Diamond-like syndrome and expansion of the phenotypic features
Tan Q, Cope H, Spillmann RC, Stong N, Jiang YH, McDonald MT, Rothman JA, Butler MW, Frush DP, Lachman RS, Lee B, Bacino CA, Bonner MJ, McCall CM, Pendse AA, Walley N, Network U, Shashi V, Pena L, Alejandro M, Azamian M, Bacino C, Balasubramanyam A, Bostwick B, Burrage L, Chen S, Clark G, Craigen W, Dhar S, Emrick L, Goldman A, Hanchard N, Jamal F, Karaviti L, Lalani S, Lee B, Lewis R, Marom R, Moretti P, Murdock D, Nicholas S, Orange J, Orengo J, Posey J, Potocki L, Rosenfeld J, Samson S, Scott D, Tran A, Vogel T, Bellen H, Wangler M, Yamamoto S, Eng C, Muzny D, Ward P, Yang Y, Goldstein D, Stong N, Cope H, Jiang Y, McConkie-Rosell A, Pena L, Schoch K, Shashi V, Spillmann R, Sullivan J, Tan Q, Walley N, Aaron A, Beggs A, Berry G, Briere L, Cooper C, Donnell-Fink L, Fieg E, High F, Korrick S, Krier J, Lincoln S, Loscalzo J, Maas R, MacRae C, Pallais J, Rodan L, Silverman E, Stoler J, Sweetser D, Walker M, Walsh C, Esteves C, Glanton E, Holm I, Kohane I, McCray A, Might M, LeBlanc K, Bick D, Birch C, Boone B, Brown D, Dorset D, Jones A, Lazar J, Levy S, May T, Newberry J, Worthey E, Batzli G, Colley H, Dayal J, Eckstein D, Gould S, Howerton E, Krasnewich D, Mamounas L, Manolio T, Mulvihill J, Urv T, Wise A, Brush M, Gourdine J, Haendel M, Koeller D, Kyle J, Metz T, Waters K, Webb-Robertson B, Ashley E, Bernstein J, Bonner D, Coakley T, Davidson J, Dries A, Enns G, Fernandez L, Fisher P, Friedman N, Hom J, Huang Y, Kohler J, Majcherska M, Marwaha S, McCormack C, Merker J, Reuter C, Sampson J, Smith K, Waggott D, Wheeler M, Zastrow D, Zhao C, Allard P, Barseghyan H, Butte M, Dell'Angelica E, Dipple K, Dorrani N, Douine E, Eskin A, Fogel B, Lee H, Loo S, Martin M, Martínez-Agosto J, Nelson S, Palmer C, Papp J, Parker N, Signer R, Sinsheimer J, Vilain E, Wan J, Yoon A, Zheng A, Behnam B, Burke E, D'Souza P, Davids M, Draper D, Estwick T, Ferreira C, Godfrey R, Groden C, Johnston J, Lau C, Macnamara E, Maduro V, Markello T, Morimoto M, Murphy J, Nehrebecky M, Novacic D, Pusey B, Sharma P, CamiloToro, Wahl C, Yu G, Gropman A, Baker E, Adams D, Gahl W, Malicdan M, Tifft C, Wolfe L, Yang J, Postlethwait J, Westerfield M, Bican A, Brokamp E, Duncan L, Hamid R, Kozuira M, Newman J, Phillips J, Rives L, Robertson A, Shakachite L, Cogan J. Further evidence for the involvement of EFL1 in a Shwachman–Diamond-like syndrome and expansion of the phenotypic features. Molecular Case Studies 2018, 4: a003046. PMID: 29970384, PMCID: PMC6169826, DOI: 10.1101/mcs.a003046.Peer-Reviewed Original ResearchConceptsShwachman-Diamond syndromeBone marrow abnormalitiesShwachman-DiamondPediatric patientsClinical featuresPancreatic insufficiencyDe novo variantsLike syndromeMarrow abnormalitiesMetaphyseal abnormalitiesPathogenic variantsBiallelic variantsMetaphyseal dysplasiaWhole-exome sequencing dataNovo variantsRecent evidenceEquivocal evidenceCausative genesPatientsPhenotypic featuresSyndromeAbnormalitiesPhenotypeFurther evidenceInitial indicationEpigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1E and literature review
Duffney LJ, Valdez P, Tremblay MW, Cao X, Montgomery S, McConkie‐Rosell A, Jiang Y. Epigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1E and literature review. American Journal Of Medical Genetics Part B Neuropsychiatric Genetics 2018, 177: 426-433. PMID: 29704315, PMCID: PMC5980735, DOI: 10.1002/ajmg.b.32631.Peer-Reviewed Original ResearchConceptsLinker proteinH1 linker histonesLinker histone proteinFamily member EChromatin organizationEpigenetic machineryHistone proteinsEpigenetic regulationLinker histonesNucleosome packagingLoss of functionDeleterious mutationsCandidate genesExpression studiesHistone writersWhole-exome sequencingHuman diseasesGenesProteinMutationsProtein expressionExome sequencingGenetic mutationsMember EHIST1H1ESystematic reconstruction of autism biology from massive genetic mutation profiles
Luo W, Zhang C, Jiang YH, Brouwer CR. Systematic reconstruction of autism biology from massive genetic mutation profiles. Science Advances 2018, 4: e1701799. PMID: 29651456, PMCID: PMC5895441, DOI: 10.1126/sciadv.1701799.Peer-Reviewed Original ResearchConceptsComplex genetic diseasesWhole-exome studiesHundreds of variantsGene functionNovel genesSubpathway levelGene groupsSame geneCanonical pathwaysPathway levelAutism-related mutationsSecond messenger systemsGenesGenetic diseasesASD biologyCAMP second messenger systemBiologyGenetic associationMutationsMultiple independent analysesMost variantsPathwayVariant levelsSynaptic functionGenetic mutation profilesCRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors
Liu CX, Li CY, Hu CC, Wang Y, Lin J, Jiang YH, Li Q, Xu X. CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Molecular Autism 2018, 9: 23. PMID: 29619162, PMCID: PMC5879542, DOI: 10.1186/s13229-018-0204-x.Peer-Reviewed Original ResearchConceptsMutant zebrafishMutant zebrafish modelGenome editing techniquesGene editing approachesZebrafish genomeOrthologous genesAttractive organismGenomic studiesCRISPR/Cas9 gene editing approachGenetic manipulationZebrafish modelCRISPR/ZebrafishMolecular mechanismsEditing approachesAdult stageFunction mutationsMolecular analysisEditing techniquesMolecular changesAutism-like behaviorsEarly developmentSwimming behaviorPresynaptic synaptophysinMorphological measurements
2017
Novel clinical manifestations in patients with KCNA2 mutations
Sachdev M, Gaínza-Lein M, Tchapyjnikov D, Jiang YH, Loddenkemper T, Mikati MA. Novel clinical manifestations in patients with KCNA2 mutations. Seizure 2017, 51: 74-76. PMID: 28806589, DOI: 10.1016/j.seizure.2017.07.018.Peer-Reviewed Original ResearchMeSH KeywordsChildChild, PreschoolEpilepsyFemaleHumansKv1.2 Potassium ChannelMaleMutationYoung AdultConceptsGeneralized tonic-clonic seizuresTonic-clonic seizuresElectrical status epilepticusNovel clinical manifestationYear old maleStatus epilepticusKCNA2 mutationsClonic seizuresClinical manifestationsMyoclonic-astatic seizuresStatus epilepticus episodesYear old femaleYears of ageAstatic seizuresSeizure typesEpileptic manifestationsFocal seizuresPatient 1Patient 2Patient 3Clinical criteriaSevere manifestationsEpileptic encephalopathyBlood samplesPatientsThe importance of managing the patient and not the gene: expanded phenotype of GLE1-associated arthrogryposis
Tan Q, McConkie-Rosell A, Juusola J, Gustafson KE, Pizoli CE, Buckley AF, Jiang YH. The importance of managing the patient and not the gene: expanded phenotype of GLE1-associated arthrogryposis. Molecular Case Studies 2017, 3: a002063. PMID: 28729373, PMCID: PMC5701308, DOI: 10.1101/mcs.a002063.Peer-Reviewed Original ResearchConceptsAnterior horn cell diseaseCell diseasePathogenic variantsMotor neuron diseaseBiallelic missense mutationsSpinal muscular atrophyWhole-exome sequencingMotor weaknessRespiratory supportRespiratory difficultyNeuron diseaseMotor phenotypePerinatal periodPrenatal symptomsContracture syndromeMuscle biopsySevere formFetal akinesiaMuscular atrophyDiseaseMRNA exportLethal arthrogryposisTranslation initiationPerinatal lethalityArthrogryposisCellular and Circuitry Bases of Autism: Lessons Learned from the Temporospatial Manipulation of Autism Genes in the Brain
Hulbert SW, Jiang YH. Cellular and Circuitry Bases of Autism: Lessons Learned from the Temporospatial Manipulation of Autism Genes in the Brain. Neuroscience Bulletin 2017, 33: 205-218. PMID: 28271437, PMCID: PMC5360850, DOI: 10.1007/s12264-017-0112-7.Peer-Reviewed Original ResearchConceptsAutism spectrum disorderDifferent neurotransmitter systemsCell typesNeurotransmitter systemsInhibitory neuronsAdult miceTransgenic miceBrain regionsCre linesDevelopmental time periodCre-loxPCertain cell typesMiceCore ASD symptomsDisordersMolecular underpinningsTime periodSpectrum disorderASD symptomsGene expressionMutationsGenetic Variants Identified from Epilepsy of Unknown Etiology in Chinese Children by Targeted Exome Sequencing
Wang Y, Du X, Bin R, Yu S, Xia Z, Zheng G, Zhong J, Zhang Y, Jiang YH, Wang Y. Genetic Variants Identified from Epilepsy of Unknown Etiology in Chinese Children by Targeted Exome Sequencing. Scientific Reports 2017, 7: 40319. PMID: 28074849, PMCID: PMC5225856, DOI: 10.1038/srep40319.Peer-Reviewed Original ResearchConceptsNGS panelCaucasian childrenEtiology of epilepsyLikely pathogenic variantsTargeted exome sequencingGenetic variantsSingle nucleotide variantsUnknown etiologyEpilepsy patientsSpecific treatmentEpilepsyEpilepsy disordersPathogenic variantsPathologic variantsGenetic susceptibilityEpilepsy genesExome sequencingEtiologyGenetic factorsEpilepsy familiesChinese childrenCandidate genesClinicNovel candidate genesChildren
2015
Monogenic mouse models of autism spectrum disorders: Common mechanisms and missing links
Hulbert SW, Jiang Y. Monogenic mouse models of autism spectrum disorders: Common mechanisms and missing links. Neuroscience 2015, 321: 3-23. PMID: 26733386, PMCID: PMC4803542, DOI: 10.1016/j.neuroscience.2015.12.040.Peer-Reviewed Original ResearchQuinidine in the treatment of KCNT1‐positive epilepsies
Mikati MA, Jiang YH, Carboni M, Shashi V, Petrovski S, Spillmann R, Milligan CJ, Li M, Grefe A, McConkie A, Berkovic S, Scheffer I, Mullen S, Bonner M, Petrou S, Goldstein D. Quinidine in the treatment of KCNT1‐positive epilepsies. Annals Of Neurology 2015, 78: 995-999. PMID: 26369628, PMCID: PMC4811613, DOI: 10.1002/ana.24520.Peer-Reviewed Original ResearchConceptsEpilepsy of infancySecondary generalized seizuresDrug-resistant epilepsySeizure frequencyGeneralized seizuresFocal seizuresKCNT1 mutationsSeizure evaluationSeizure diariesTargeted drugsTherapeutic benefitDevelopmental regressionEpilepsyGain of functionQuinidineEarly childhoodSeizuresPatientsMutationsWhole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios
Zhu X, Petrovski S, Xie P, Ruzzo EK, Lu YF, McSweeney KM, Ben-Zeev B, Nissenkorn A, Anikster Y, Oz-Levi D, Dhindsa RS, Hitomi Y, Schoch K, Spillmann RC, Heimer G, Marek-Yagel D, Tzadok M, Han Y, Worley G, Goldstein J, Jiang YH, Lancet D, Pras E, Shashi V, McHale D, Need AC, Goldstein DB. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genetics In Medicine 2015, 17: 774-781. PMID: 25590979, PMCID: PMC4791490, DOI: 10.1038/gim.2014.191.Peer-Reviewed Original ResearchConceptsDisease genesWhole-exome sequencingDamaging de novo mutationsNovel bioinformatics approachNovel disease genesAppropriate bioinformatics analysisNew gene-disease associationsClinical sequence dataGene-disease associationsDisease-causing genesNovel genesIntolerant genesBioinformatics approachSequence dataBioinformatics analysisDe novo mutationsGenomic interpretationPattern of genotypesSimilar phenotypeGenesGenetic diseasesDiagnostic genotypesUndiagnosed genetic diseasesNovo mutationsCandidate genotypes
2014
A CACNA1C Variant Associated with Reduced Voltage-Dependent Inactivation, Increased CaV1.2 Channel Window Current, and Arrhythmogenesis
Hennessey JA, Boczek NJ, Jiang YH, Miller JD, Patrick W, Pfeiffer R, Sutphin BS, Tester DJ, Barajas-Martinez H, Ackerman MJ, Antzelevitch C, Kanter R, Pitt GS. A CACNA1C Variant Associated with Reduced Voltage-Dependent Inactivation, Increased CaV1.2 Channel Window Current, and Arrhythmogenesis. PLOS ONE 2014, 9: e106982. PMID: 25184293, PMCID: PMC4153713, DOI: 10.1371/journal.pone.0106982.Peer-Reviewed Original ResearchConceptsSudden unexplained infant deathVoltage-dependent inactivationLong QT syndromeWindow currentTimothy syndromeCav1.2 L-type Ca2Multiple dental cariesLower extremity weaknessGain of functionCertain clinical settingsEpisodes of rhabdomyolysisUnexplained infant deathL-type Ca2Channel window currentAge 5 yearsYears of ageAppreciation of mechanismsMonths of ageCandidate gene sequencingCardiac ion channelsRecurrent VTExtremity weaknessSpastic diplegiaExtracardiac featuresDental caries