2018
Glutathione and Transsulfuration in Alcohol-Associated Tissue Injury and Carcinogenesis
Chen Y, Han M, Matsumoto A, Wang Y, Thompson DC, Vasiliou V. Glutathione and Transsulfuration in Alcohol-Associated Tissue Injury and Carcinogenesis. Advances In Experimental Medicine And Biology 2018, 1032: 37-53. PMID: 30362089, PMCID: PMC6743726, DOI: 10.1007/978-3-319-98788-0_3.ChaptersConceptsGSH biosynthesisAbundant non-protein thiolEpigenetic gene regulationNon-protein thiolsGlutathione S-transferase (GST) familyGene regulationPeroxidase familyExogenous electrophilesCellular methylationReactive oxygen speciesGSH functionsCellular concentrationRelated enzymesTranssulfuration pathwayCancer developmentOxygen speciesBiosynthesisExogenous chemicalsEnzymeTransmethylation pathwayEnhanced susceptibilityPathological conditionsIntimate involvementMillimolar rangePathway
2014
Transgenic Mouse Models for Alcohol Metabolism, Toxicity, and Cancer
Heit C, Dong H, Chen Y, Shah YM, Thompson DC, Vasiliou V. Transgenic Mouse Models for Alcohol Metabolism, Toxicity, and Cancer. Advances In Experimental Medicine And Biology 2014, 815: 375-387. PMID: 25427919, PMCID: PMC4323349, DOI: 10.1007/978-3-319-09614-8_22.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsReactive oxygen speciesAldehyde dehydrogenasesCritical biological functionsAlcohol dehydrogenaseFormation of proteinHuman genesBiological functionsMolecular mechanismsVariety of cancersPrimary enzymeGenetic defectsOxygen speciesEnzymeNitrogen speciesEthanol metabolismTransgenic mouse modelOxidative stressSpeciesCytochrome P450Pathogenic eventsMetabolismGenetic polymorphismsAntioxidant mechanismsAlcohol-induced toxicityAlcohol-metabolizing enzymes
2012
Aldehyde Dehydrogenase Inhibitors: a Comprehensive Review of the Pharmacology, Mechanism of Action, Substrate Specificity, and Clinical Application
Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, Petersen D, Deitrich RA, Hurley TD, Vasiliou V. Aldehyde Dehydrogenase Inhibitors: a Comprehensive Review of the Pharmacology, Mechanism of Action, Substrate Specificity, and Clinical Application. Pharmacological Reviews 2012, 64: 520-539. PMID: 22544865, PMCID: PMC3400832, DOI: 10.1124/pr.111.005538.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsRetinoic acid signalingSuperfamily of enzymesCellular defense mechanismsALDH isozymesCellular homeostasisMechanism of actionAcid signalingCorneal crystallinsSubstrate specificityIsozyme-selective inhibitorsALDH enzymesToxicological functionsKey enzymeHuman ALDHHuman diseasesHuman cancersDefense mechanismsPharmacological inhibitionToxicological roleReactive aldehydesALDH inhibitorsIsozymesEnzymeUltraviolet radiation-induced damagePivotal role
2009
Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit
Lavoie S, Chen Y, Dalton TP, Gysin R, Cuénod M, Steullet P, Q. K. Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. Journal Of Neurochemistry 2009, 108: 1410-1422. PMID: 19183254, DOI: 10.1111/j.1471-4159.2009.05908.x.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAntioxidantsAstrocytesCell SurvivalCells, CulturedCerebral CortexCurcuminDose-Response Relationship, DrugEmbryo, MammalianEnzyme InhibitorsGene ExpressionGlutamate-Cysteine LigaseGlutathioneHydroquinonesMiceMice, Inbred C57BLMice, KnockoutNeuronsProtein SubunitsQuercetinUp-RegulationConceptsGlutamate-cysteine ligaseGCL activityRate-limiting synthesizing enzymeRedox regulatorCatalytic subunitGSH levelsGene expressionCysteine ligaseGlutamate cysteine ligase modifierModifier subunitCell deathCell typesGSH synthesisEnzymeNeurodegenerative diseasesCultured neuronsGCLMSubunitsMRNA levelsSynthesizing enzymesGSHLower GSHAbility of curcuminExpressionLigase
2008
Knock-In Mouse Lines Expressing either Mitochondrial or Microsomal CYP1A1: Differing Responses to Dietary Benzo[a]pyrene as Proof of Principle
Dong H, Dalton TP, Miller ML, Chen Y, Uno S, Shi Z, Shertzer HG, Bansal S, Avadhani NG, Nebert DW. Knock-In Mouse Lines Expressing either Mitochondrial or Microsomal CYP1A1: Differing Responses to Dietary Benzo[a]pyrene as Proof of Principle. Molecular Pharmacology 2008, 75: 555-567. PMID: 19047483, PMCID: PMC2684908, DOI: 10.1124/mol.108.051888.Peer-Reviewed Original ResearchConceptsMitochondrial importCryptic targeting signalMitochondrial-targeting signalSignal recognition particleInner mitochondrial membraneDifferent substrate specificitiesMouse linesCYP1A1 proteinTargeting signalsRecognition particleCYP1A1 enzymeSubstrate specificityMitochondrial membraneEndoplasmic reticulumBaP toxicityPhysiological functionsTerminal processingProteinCytosolic peptidasesProof of principleMutationsEnzymeInducer propertiesCYP1B1 mRNAMicrosomal CYP1A1