2020
miR-27b Modulates Insulin Signaling in Hepatocytes by Regulating Insulin Receptor Expression
Benito-Vicente A, Uribe KB, Rotllan N, Ramírez CM, Jebari-Benslaiman S, Goedeke L, Canfrán-Duque A, Galicia-García U, De Urturi D, Aspichueta P, Suárez Y, Fernández-Hernando C, Martín C. miR-27b Modulates Insulin Signaling in Hepatocytes by Regulating Insulin Receptor Expression. International Journal Of Molecular Sciences 2020, 21: 8675. PMID: 33212990, PMCID: PMC7698485, DOI: 10.3390/ijms21228675.Peer-Reviewed Original ResearchConceptsInsulin resistanceInsulin receptor substrate-1Type 2 diabetes mellitusHepatic insulin resistanceInsulin receptorInsulin receptor expressionImplication of microRNAsDiabetes mellitusHeart failureCardiometabolic pathologiesInsulin sensitivityReceptor expressionINSR expressionReceptor substrate-1Human hepatoma cellsHepatic tissueLipid metabolismObesityInsulinHigh expressionMiR-27Hepatoma cellsSubstrate-1Novel roleLiver
2016
Platelet WDR1 suppresses platelet activity and is associated with cardiovascular disease
Montenont E, Echagarruga C, Allen N, Araldi E, Suarez Y, Berger JS. Platelet WDR1 suppresses platelet activity and is associated with cardiovascular disease. Blood 2016, 128: 2033-2042. PMID: 27609643, PMCID: PMC5073182, DOI: 10.1182/blood-2016-03-703157.Peer-Reviewed Original ResearchConceptsPlatelet activityCardiovascular diseaseMEG-01 cellsHyperreactive platelet phenotypeBasal intracellular calcium concentrationPathogenesis of atherothrombosisSex-matched controlsIntracellular calcium concentrationMessenger RNAMEG-01Healthy controlsClinical significancePlatelet-related genesPlatelet phenotypeBasal stateMegakaryoblastic cell line MEG-01Human megakaryoblastic cell line MEG-01Thrombin activationDiseaseCalcium concentrationKD phenotypeProtein levelsF-actin contentPlatelet messenger RNAPlatelet RNA
2013
A Regulatory Role for MicroRNA 33* in Controlling Lipid Metabolism Gene Expression
Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D, Chamorro-Jorganes A, Ramírez CM, Mattison JA, de Cabo R, Suárez Y, Fernández-Hernando C. A Regulatory Role for MicroRNA 33* in Controlling Lipid Metabolism Gene Expression. Molecular And Cellular Biology 2013, 33: 2339-2352. PMID: 23547260, PMCID: PMC3648071, DOI: 10.1128/mcb.01714-12.Peer-Reviewed Original ResearchConceptsMiR-33Gene expressionRegulatory roleTarget gene networkKey transcriptional regulatorTarget gene expressionMetabolism gene expressionIntronic microRNAsHuman hepatic cellsLipid metabolismSterol regulatory element-binding protein 2Transcriptional regulatorsSister strandsGene networksLipid metabolism gene expressionSteady-state levelsHost genesFatty acid metabolismFatty acid oxidationKey enzymeLipid homeostasisPassenger strandMicroRNA-33Functional roleProtein 2
2012
miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish
Stahlhut C, Suárez Y, Lu J, Mishima Y, Giraldez AJ. miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish. Development 2012, 139: 4356-4365. PMID: 23132244, PMCID: PMC3509730, DOI: 10.1242/dev.083774.Peer-Reviewed Original ResearchConceptsMiR-1/206Post-transcriptional modulatorsMiRNA-target interactionsMiR-1Appropriate physiological responsesRegulation of VEGFAZebrafish developmentEmbryonic developmentTarget protectorNovel functionPrecise regulationGene expressionMorphogenetic activityDevelopmental angiogenesisPutative targetsRegulate angiogenesisEssential processMiR-206Physiological responsesCellular communicationVEGFA expressionGrowth factorVascular endothelial growth factorExpressionAngiogenesis
2011
MicroRNA-758 Regulates Cholesterol Efflux Through Posttranscriptional Repression of ATP-Binding Cassette Transporter A1
Ramirez CM, Dávalos A, Goedeke L, Salerno AG, Warrier N, Cirera-Salinas D, Suárez Y, Fernández-Hernando C. MicroRNA-758 Regulates Cholesterol Efflux Through Posttranscriptional Repression of ATP-Binding Cassette Transporter A1. Arteriosclerosis Thrombosis And Vascular Biology 2011, 31: 2707-2714. PMID: 21885853, PMCID: PMC3298756, DOI: 10.1161/atvbaha.111.232066.Peer-Reviewed Original ResearchConceptsATP-binding cassette transporter A1Cassette transporter A1Posttranscriptional regulationCellular cholesterol effluxUnbiased genome-wide screenMiR-758Cholesterol effluxGenome-wide screenExpression of ABCA1Cholesterol-loaded macrophagesIntracellular cholesterol accumulationPosttranscriptional repressionNovel miRNABioinformatics analysisMouse cellsMajor regulatorHuman cellsLuciferase reporterMacrophage cholesterol effluxMouse peritoneal macrophagesPeritoneal macrophagesABCA1 geneABCA1 expressionQuantitative real-time reverse transcription-polymerase chain reactionHigh-density lipoprotein levels
2010
MiR-33 Contributes to the Regulation of Cholesterol Homeostasis
Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernández-Hernando C. MiR-33 Contributes to the Regulation of Cholesterol Homeostasis. Science 2010, 328: 1570-1573. PMID: 20466885, PMCID: PMC3114628, DOI: 10.1126/science.1189862.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApolipoprotein A-IATP Binding Cassette Transporter 1ATP Binding Cassette Transporter, Subfamily G, Member 1ATP-Binding Cassette TransportersCarrier ProteinsCell LineCholesterolCholesterol, DietaryDietary FatsGene Expression RegulationHomeostasisHumansHypercholesterolemiaIntracellular Signaling Peptides and ProteinsIntronsLipoproteinsLipoproteins, HDLLiverMacrophagesMacrophages, PeritonealMembrane GlycoproteinsMiceMice, Inbred C57BLMicroRNAsNiemann-Pick C1 ProteinProteinsSterol Regulatory Element Binding Protein 2TransfectionConceptsSterol regulatory element-binding factor-2MiR-33Cellular cholesterol transportCholesterol effluxExpression of genesIntronic microRNAsTranscriptional regulatorsTriphosphate-binding cassette transportersAdenosine triphosphate-binding cassette transportersCellular cholesterol effluxCassette transportersHDL biogenesisHuman cellsCellular levelCholesterol homeostasisABCA1 expressionFactor 2Mouse macrophagesGenesLentiviral deliveryCholesterol transportExpressionABCA1Cholesterol metabolismEfflux
2009
Nogo-B Receptor Stabilizes Niemann-Pick Type C2 Protein and Regulates Intracellular Cholesterol Trafficking
Harrison KD, Miao RQ, Fernandez-Hernándo C, Suárez Y, Dávalos A, Sessa WC. Nogo-B Receptor Stabilizes Niemann-Pick Type C2 Protein and Regulates Intracellular Cholesterol Trafficking. Cell Metabolism 2009, 10: 208-218. PMID: 19723497, PMCID: PMC2739452, DOI: 10.1016/j.cmet.2009.07.003.Peer-Reviewed Original ResearchConceptsNiemann-Pick type C2 (NPC2) proteinIntracellular cholesterol traffickingC2 proteinCholesterol traffickingEndoplasmic reticulumTwo-hybrid screenC-terminal domainCellular rolesIntracellular cholesterol accumulationSterol sensingProtein stabilityN-terminusNgBRProteinProtein levelsNPC2 mutationsCholesterol accumulationGenetic deficiencyTraffickingRNAiNPC2TerminusBiologyBaitReticulum
2002
Differential effects of ergosterol and cholesterol on Cdk1 activation and SRE‐driven transcription
Suárez Y, Fernández C, Ledo B, Ferruelo AJ, Martín M, Vega MA, Gómez‐Coronado D, Lasunción MA. Differential effects of ergosterol and cholesterol on Cdk1 activation and SRE‐driven transcription. The FEBS Journal 2002, 269: 1761-1771. PMID: 11895447, DOI: 10.1046/j.1432-1327.2002.02822.x.Peer-Reviewed Original ResearchConceptsHuman cellsCdk1 activationCell cycle machineryCell membrane formationCell cycle progressionCholesterol-free mediumCell cycle arrestG2/M phaseSpecific regulatorsCycle machineryGene constructsYeast sterolCycle progressionCell cycleCell proliferation inhibitionCycle arrestAction of cholesterolUCN-01Cell growthCyclin B1 expressionSKF 104976Cholesterol homeostasisM phaseMembrane formationCell proliferation
2001
Dose-dependent effects of lovastatin on cell cycle progression. Distinct requirement of cholesterol and non-sterol mevalonate derivatives
Martı́nez-Botas J, Ferruelo A, Suárez Y, Fernández C, Gómez-Coronado D, Lasunción M. Dose-dependent effects of lovastatin on cell cycle progression. Distinct requirement of cholesterol and non-sterol mevalonate derivatives. Biochimica Et Biophysica Acta 2001, 1532: 185-194. PMID: 11470239, DOI: 10.1016/s1388-1981(01)00125-1.Peer-Reviewed Original ResearchConceptsCell proliferationLow-density lipoprotein cholesterolCell cycle progressionDose-dependent effectCell cycle distributionCell cycleCycle progressionLipoprotein cholesterolConcentrations of lovastatinCholesterol supplyCycle distributionCholesterolLovastatinHuman cell linesCell linesCholesterol biosynthesisCholesterol-free mediumNormal cell cyclingM phaseProgressionProliferationPresent studyHL-60Mevalonate derivativesCell cycling