2021
Chronic cannabis smoking-enriched oral pathobiont drives behavioral changes, macrophage infiltration, and increases β-amyloid protein production in the brain
Luo Z, Fitting S, Robinson C, Benitez A, Li M, Wu Y, Fu X, Amato D, Ning W, Funderburg N, Wang X, Zhou Z, Yu X, Wagner A, Cong X, Xu W, Maas K, Wolf B, Huang L, Yu J, Scott A, Mcrae-Clark A, Hamlett E, Jiang W. Chronic cannabis smoking-enriched oral pathobiont drives behavioral changes, macrophage infiltration, and increases β-amyloid protein production in the brain. EBioMedicine 2021, 74: 103701. PMID: 34826801, PMCID: PMC8626580, DOI: 10.1016/j.ebiom.2021.103701.Peer-Reviewed Original ResearchConceptsCannabis smokersActinomyces meyeriCannabis smokingCentral nervous systemOral pathobiontsChronic cannabis smokersMacrophage infiltrationCannabis use disorderOral microbiomeOral microbial dysbiosisSaliva microbiomeNon-smoking controlsIncreased macrophage infiltrationCannabis exposureUse disorderMicrobial 16S rRNA sequencingCannabisCNS abnormalitiesProtein productionActinomyces odontolyticusOral bacteriaBehavioral changesNon-smokersMicrobial dysbiosisNervous systemBehavioral and neuroanatomical outcomes following altered serotonin expression in a hypoxic-ischemic injury neonate rodent model.
Casavant S, Li H, Cong X, Starkweather A, Moore J, Rosenkrantz T, Fitch R. Behavioral and neuroanatomical outcomes following altered serotonin expression in a hypoxic-ischemic injury neonate rodent model. Journal Of Neonatal-Perinatal Medicine 2021, 14: 353-360. PMID: 33164949, DOI: 10.3233/npm-200418.Peer-Reviewed Original ResearchConceptsNeonatal intensive care unitNeonatal rodent modelHypoxic-ischemicSLC6A4 methylationRodent modelsNeuroanatomical outcomesSSRI-treated subjectsWistar rat pupsSerotonin transporter proteinIntensive care unitIncreased incidence of autism spectrum disorderChronic SSRIBehavioral tasksHI injuryHemorrhagic eventsRat pupsIncidence of autism spectrum disordersSerotonin expressionSerotonin levelsPresence of injuryAssociated with methylationSSRIsTreated subjectsSham groupIncreased incidence
2019
A Mechanistic Model of Gut–Brain Axis Perturbation and High-Fat Diet Pathways to Gut Microbiome Homeostatic Disruption, Systemic Inflammation, and Type 2 Diabetes
Lew K, Starkweather A, Cong X, Judge M. A Mechanistic Model of Gut–Brain Axis Perturbation and High-Fat Diet Pathways to Gut Microbiome Homeostatic Disruption, Systemic Inflammation, and Type 2 Diabetes. Biological Research For Nursing 2019, 21: 384-399. PMID: 31113222, DOI: 10.1177/1099800419849109.Peer-Reviewed Original ResearchConceptsGut-brain axisGut-brain axis pathwayHigh-fat dietDNA sequencing technologiesPro-inflammatory pathwaysMechanistic modelSequencing technologiesGut microbiomeHuman microbiomeHomeostatic disruptionProgression of T2DInsulin resistanceNonmodifiable risk factorsSystemic inflammationGutHigh-fatMicrobiomePathwayHomeostatic imbalanceMetabolic diseasesRisk factorsLow-grade systemic inflammationAmerican populationTranslocation of endotoxinWall permeability
2016
Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.
Cong X, Xu W, Romisher R, Poveda S, Forte S, Starkweather A, Henderson W. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors. The Yale Journal Of Biology And Medicine 2016, 89: 299-308. PMID: 27698614, PMCID: PMC5045139.Peer-Reviewed Original ResearchConceptsGut microbiomeNeonatal intensive care unitDysbiosis of gut microbiotaSignaling systemHost-microbial interactionsNeonatal gut microbiomeGut microbiotaEvolutionary trajectoriesHigh-risk preterm infantsHost geneticsDysbiosis patternsLong-term infant healthIntensive care unitMicrobiomePreterm infantsEarly life stressGeneticsHuman newbornsRegulation of healthCare unitNeurodevelopmental processesInfant healthHostMedication useDelivery mode