2024
Simulating Cavity-Modified Electron Transfer Dynamics on NISQ Computers
Lyu N, Khazaei P, Geva E, Batista V. Simulating Cavity-Modified Electron Transfer Dynamics on NISQ Computers. The Journal Of Physical Chemistry Letters 2024, 15: 9535-9542. PMID: 39264851, DOI: 10.1021/acs.jpclett.4c02220.Peer-Reviewed Original ResearchElectron transfer dynamicsElectron transfer rateTransfer dynamicsIntramolecular electron transfer reactionElectron transfer reactionsNISQ computersCavity frequencyMolecular triadMolecular systemsTransfer reactionsQuantum (NISQ) computersNoisy Intermediate-Scale Quantum (NISQ) computersThermo field dynamicsIncreasing coupling strengthTetrahydrofuranTransfer rateCoupling strengthQuantum computationQuantum mechanicsEffect of couplingElectronNISQRate processesOscillatory dynamicsReactionSite-specific template generative approach for retrosynthetic planning
Shee Y, Li H, Zhang P, Nikolic A, Lu W, Kelly H, Manee V, Sreekumar S, Buono F, Song J, Newhouse T, Batista V. Site-specific template generative approach for retrosynthetic planning. Nature Communications 2024, 15: 7818. PMID: 39251606, PMCID: PMC11385523, DOI: 10.1038/s41467-024-52048-4.Peer-Reviewed Original ResearchComplexity of chemical spaceRetrosynthetic planningGenerative machine learning methodsChemical spaceTarget compoundsChemical transformationsChemical synthesisReaction templatesSynthetic pathwaySmall moleculesGenerative machine learningMoleculesReactionMachine learning methodsSynthesisUser selectionSynthonsLearning methodsMachine learningGeneration approachReactantsRetrosynthesisInterconversionCompoundsLigand-Based Principal Component Analysis Followed by Ridge Regression: Application to an Asymmetric Negishi Reaction
Kelly H, Sreekumar S, Manee V, Cuomo A, Newhouse T, Batista V, Buono F. Ligand-Based Principal Component Analysis Followed by Ridge Regression: Application to an Asymmetric Negishi Reaction. ACS Catalysis 2024, 14: 5027-5038. DOI: 10.1021/acscatal.3c06230.Peer-Reviewed Original ResearchPd-catalyzed Negishi cross-coupling reactionsC-C bond-forming reactionsNegishi cross-coupling reactionsP-chiral monophosphorus ligandsCross-coupling reactionsP-stacking interactionsBond-forming reactionsElectronic descriptorsNegishi reactionMonophosphorus ligandsCatalytic systemChemical spaceEnantioselectivityChemical understandingLigandReactionSelective inversionDescriptorsRidge regressionStericallyChemicalPrincipal component analysisMechanistic knowledgeRidge regression modelElectron
2023
The landscape of computational approaches for artificial photosynthesis
Yang K, Kyro G, Batista V. The landscape of computational approaches for artificial photosynthesis. Nature Computational Science 2023, 3: 504-513. PMID: 38177419, DOI: 10.1038/s43588-023-00450-1.Peer-Reviewed Original Research
2022
Binding of the substrate analog methanol in the oxygen-evolving complex of photosystem II in the D1-N87A genetic variant of cyanobacteria
Kalendra V, Reiss KM, Banerjee G, Ghosh I, Baldansuren A, Batista VS, Brudvig GW, Lakshmi KV. Binding of the substrate analog methanol in the oxygen-evolving complex of photosystem II in the D1-N87A genetic variant of cyanobacteria. Faraday Discussions 2022, 234: 195-213. PMID: 35147155, DOI: 10.1039/d1fd00094b.Peer-Reviewed Original ResearchConceptsOxygen-evolving complexDensity functional theorySolar water-splitting protein complexTwo-dimensional hyperfine sublevel correlation spectroscopyPhotosystem IIQuantum mechanics/molecular mechanicsHyperfine sublevel correlation spectroscopyWater oxidation reactionWater oxidationCatalytic clustersOxidation reactionSubstrate waterMolecular mechanicsCorrelation spectroscopyFunctional theorySubstrate analoguesLight energyMethanolComplexesReactionIntermediatesDetailed mechanismCatalystSpectroscopyWater
2021
Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts
Lang C, Li J, Yang K, Wang Y, He D, Thorne J, Croslow S, Dong Q, Zhao Y, Prostko G, Brudvig G, Batista V, Waegele M, Wang D. Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. Chem 2021, 7: 2101-2117. DOI: 10.1016/j.chempr.2021.03.015.Peer-Reviewed Original ResearchWater oxidation mechanismWater oxidation reactionWater nucleophilic attack mechanismCo-based catalystsO bond formationNucleophilic attack mechanismKey elementary stepsHeterogeneous catalystsSalt electrolyteElectrode potentialApplied potentialBond formationLow driving forceO couplingElementary stepsMechanistic switchCatalystHigh driving forceDriving forceReactionAttack mechanismWater activityElectrolyteHereinPotential
2020
The Mechanism of Substrate Delivery and Activation in the Solar Water Oxidation Reaction of Photosystem II
Lakshmi K, Kalendra V, Banerjee G, Ghosh I, Yang K, Batista V, Brudvig G. The Mechanism of Substrate Delivery and Activation in the Solar Water Oxidation Reaction of Photosystem II. Biophysical Journal 2020, 118: 610a. DOI: 10.1016/j.bpj.2019.11.3292.Peer-Reviewed Original Research
2018
Photoexcited radical anion super-reductants for solar fuels catalysis
La Porte N, Martinez J, Chaudhuri S, Hedström S, Batista V, Wasielewski M. Photoexcited radical anion super-reductants for solar fuels catalysis. Coordination Chemistry Reviews 2018, 361: 98-119. DOI: 10.1016/j.ccr.2018.01.018.Peer-Reviewed Original ResearchMetal centerCarbon-neutral energy economyCharge-separated lifetimeSolar fuel catalysisReduction of CO2Catalytic transformationsRadical anionFuel catalysisElectron transferImportant reactionsRedox potentialActive complexGlobal energy demandExcitation wavelengthSolar spectrumCarbon dioxideLargest possible portionReactionNsRylenediimidesCatalysisEnergy economyAnionsSolar energyChromophore
2017
Antimony Complexes for Electrocatalysis: Activity of a Main‐Group Element in Proton Reduction
Jiang J, Materna K, Hedström S, Yang K, Crabtree R, Batista V, Brudvig G. Antimony Complexes for Electrocatalysis: Activity of a Main‐Group Element in Proton Reduction. Angewandte Chemie 2017, 129: 9239-9243. DOI: 10.1002/ange.201704700.Peer-Reviewed Original ResearchMain group catalysisRedox-active ligandsMain group complexesQuantum chemistry calculationsMain group elementsViable electrocatalystsPorphyrin ligandChemistry calculationsHydroxy ligandsElectrocatalysis applicationsProton reductionCatalytic propertiesAntimony complexesRedox activityAxial ligandsCatalytic cycleSb centerLigandsCatalysisComplexesElectrocatalysisElectrocatalystsPorphyrinsReactionAcid
2012
Organometallic Ni Pincer Complexes for the Electrocatalytic Production of Hydrogen
Luca OR, Blakemore JD, Konezny SJ, Praetorius JM, Schmeier TJ, Hunsinger GB, Batista VS, Brudvig GW, Hazari N, Crabtree RH. Organometallic Ni Pincer Complexes for the Electrocatalytic Production of Hydrogen. Inorganic Chemistry 2012, 51: 8704-8709. PMID: 22849660, DOI: 10.1021/ic300009a.Peer-Reviewed Original ResearchOrganometallic nickel complexesTridentate pincer ligandsElectrocatalytic proton reductionThird-order rate lawOrder rate lawNickel complexesPincer ligandCatalytic responseProton reductionFaradaic yieldPincer complexesReduction electrocatalysisElectrocatalytic productionCatalytic cycleReduction cycleHydrogen economyComputational studyHydrogen productionRate lawParent compoundCatalystLigandsMechanistic insightsComplexesReactionFuel selection for a regenerative organic fuel cell/flow battery: thermodynamic considerations
Araujo C, Simone D, Konezny S, Shim A, Crabtree R, Soloveichik G, Batista V. Fuel selection for a regenerative organic fuel cell/flow battery: thermodynamic considerations. Energy & Environmental Science 2012, 5: 9534-9542. DOI: 10.1039/c2ee22749e.Peer-Reviewed Original ResearchOpen circuit potentialTheoretical open circuit potentialHydrogen fuel cellsThermodynamic considerationsFlow batteriesDehydrogenation productsDehydrogenation reactionFuel cellsOrganic fuelsCircuit potentialOrganic carriersBattery systemEnergy densityHeterocyclicHydrogenationCarbocyclicBatteriesReactionHydrocarbonsFuel
2002
Proton-Transfer Dynamics in the Activation of Cytochrome P450eryF
Guallar V, Harris D, Batista V, Miller W. Proton-Transfer Dynamics in the Activation of Cytochrome P450eryF. Journal Of The American Chemical Society 2002, 124: 1430-1437. PMID: 11841312, DOI: 10.1021/ja016474v.Peer-Reviewed Original ResearchConceptsProton transfer eventsProton transfer dynamicsCytochrome P450eryFQuantum chemistry calculationsHydrogen bond networkMechanism of oxidationUltrafast proton transferMolecular dynamics simulationsProton transfer energy profileChemistry calculationsDistal oxygenOxyferrous stateBond networkProton transferEnergy profilesDynamics simulationsHeme groupEnzymatic efficacyP450eryFEnzymatic activationOxidationOxygen speciesReactionOxygenCytochrome P450