2022
Dynamic quality control machinery that operates across compartmental borders mediates the degradation of mammalian nuclear membrane proteins
Tsai P, Cameron C, Forni M, Wasko R, Naughton B, Horsley V, Gerstein M, Schlieker C. Dynamic quality control machinery that operates across compartmental borders mediates the degradation of mammalian nuclear membrane proteins. Cell Reports 2022, 41: 111675. PMID: 36417855, PMCID: PMC9827541, DOI: 10.1016/j.celrep.2022.111675.Peer-Reviewed Original ResearchConceptsProtein turnoverCellular quality control systemNuclear membrane proteinsQuality control machineryDistinct cellular compartmentsNuclear envelope proteinsGenetic screenProtein homeostasisUbiquitin ligasesControl machineryMembrane proteinsCellular compartmentsEnzyme Ube2g2Quality control systemEndoplasmic reticulumHuman diseasesEfficient biosynthesisHRD1RNF5Disease variantsTMEM33Envelope proteinSubstrate levelsDisease etiologyModel substrate
2018
Integration of Biochemical and Mechanical Signals at the Nuclear Periphery: Impacts on Skin Development and Disease
Stewart R, King M, Horsley V. Integration of Biochemical and Mechanical Signals at the Nuclear Periphery: Impacts on Skin Development and Disease. Stem Cell Biology And Regenerative Medicine 2018, 263-292. DOI: 10.1007/978-3-319-16769-5_11.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsNuclear laminaIntegral inner nuclear membrane proteinsInner nuclear membrane proteinSkin developmentMechanical signalsNuclear membrane proteinsInner nuclear membraneIntegration of biochemicalGenome integrityNuclear peripheryTranscriptional outputNuclear laminsAssociated chromatinMembrane proteinsNuclear interiorTissue-level mechanicsGene expressionNuclear membraneSkin homeostasisKeratinocyte differentiationMechanical inputChromatinLaminsLaminaProtein