Site-specific template generative approach for retrosynthetic planning
Shee Y, Li H, Zhang P, Nikolic A, Lu W, Kelly H, Manee V, Sreekumar S, Buono F, Song J, Newhouse T, Batista V. Site-specific template generative approach for retrosynthetic planning. Nature Communications 2024, 15: 7818. PMID: 39251606, PMCID: PMC11385523, DOI: 10.1038/s41467-024-52048-4.Peer-Reviewed Original ResearchComplexity of chemical spaceRetrosynthetic planningGenerative machine learning methodsChemical spaceTarget compoundsChemical transformationsChemical synthesisReaction templatesSynthetic pathwaySmall moleculesGenerative machine learningMoleculesReactionMachine learning methodsSynthesisUser selectionSynthonsLearning methodsMachine learningGeneration approachReactantsRetrosynthesisInterconversionCompoundsAccessing Z‐Enynes via Cobalt‐Catalyzed Propargylic Dehydrogenation
Bodnar A, Newhouse T. Accessing Z‐Enynes via Cobalt‐Catalyzed Propargylic Dehydrogenation. Angewandte Chemie International Edition 2024, 63: e202402638. PMID: 38591826, DOI: 10.1002/anie.202402638.Peer-Reviewed Original ResearchKinetic isotope effectsZ-alkenesZ-selectivityCobalt-catalyzedPropargylic positionE-alkenesIsomerization experimentsZ-enyneOrganic synthesisThermodynamic preferenceSubstituted moleculesIsotope effectDehydrogenationRate limiting stepOxide systemsLimiting stepKinetic effectsDeprotonationAlkenesIsomerizationMoleculesSynthesisAccessing Z‐Enynes via Cobalt‐Catalyzed Propargylic Dehydrogenation
Bodnar A, Newhouse T. Accessing Z‐Enynes via Cobalt‐Catalyzed Propargylic Dehydrogenation. Angewandte Chemie 2024, 136 DOI: 10.1002/ange.202402638.Peer-Reviewed Original ResearchKinetic isotope effectsZ-alkenesZ-selectivityCobalt-catalyzedPropargylic positionE-alkenesIsomerization experimentsZ-enyneOrganic synthesisThermodynamic preferenceSubstituted moleculesIsotope effectDehydrogenationRate limiting stepOxide systemsLimiting stepKinetic effectsDeprotonationAlkenesIsomerizationMoleculesSynthesisComprehensive Mechanistic Analysis of Palladium- and Nickel-Catalyzed α,β-Dehydrogenation of Carbonyls via Organozinc Intermediates
Bodnar A, Szewczyk S, Sun Y, Chen Y, Huang A, Newhouse T. Comprehensive Mechanistic Analysis of Palladium- and Nickel-Catalyzed α,β-Dehydrogenation of Carbonyls via Organozinc Intermediates. The Journal Of Organic Chemistry 2024, 89: 3123-3132. PMID: 38377547, PMCID: PMC11000628, DOI: 10.1021/acs.joc.3c02572.Peer-Reviewed Original ResearchOrganozinc intermediatesOrganic synthesisC-C bond formationElectron-withdrawing groupsReactivity of PdAdjacent electron‐withdrawing groupConversion of alkanesAnalysis of palladiumNickel catalysisDFT calculationsKIE experimentsStoichiometric reactionBond formationReaction typesSmall moleculesComprehensive mechanistic analysisPalladiumDegree of unsaturationCentral transformationEfficient strategyIntermediateRate studiesReactionSynthesisPd