2019
The Functionally Important N‑Terminal Half of Fission Yeast Mid1p Anillin Is Intrinsically Disordered and Undergoes Phase Separation
Chatterjee M, Pollard TD. The Functionally Important N‑Terminal Half of Fission Yeast Mid1p Anillin Is Intrinsically Disordered and Undergoes Phase Separation. Biochemistry 2019, 58: 3031-3041. PMID: 31243991, PMCID: PMC7336169, DOI: 10.1021/acs.biochem.9b00217.Peer-Reviewed Original ResearchConceptsN-terminal halfFission yeast Schizosaccharomyces pombeYeast Schizosaccharomyces pombeC-terminal halfFull-length proteinSchizosaccharomyces pombeStructure prediction toolsPH domainScaffold proteinInsect cellsAnimal cellsContractile ringMyosin IIOrganizing centerAnillinMid1pProteinHydrodynamic measurementsPombeCytokinesisUndergoes phase separationCellsFungalPrediction tools
2015
Three Myosins Contribute Uniquely to the Assembly and Constriction of the Fission Yeast Cytokinetic Contractile Ring
Laplante C, Berro J, Karatekin E, Hernandez-Leyva A, Lee R, Pollard TD. Three Myosins Contribute Uniquely to the Assembly and Constriction of the Fission Yeast Cytokinetic Contractile Ring. Current Biology 2015, 25: 1955-1965. PMID: 26144970, PMCID: PMC4526439, DOI: 10.1016/j.cub.2015.06.018.Peer-Reviewed Original ResearchConceptsContractile ringActin filamentsHeavy chain geneMyosin IIContractile ring assemblyFission yeast cellsMyosin heavy chain geneCytokinetic contractile ringConventional myosin IICytokinetic nodesMyo2Myo51Myp2Ring assemblyYeast cellsMyosin functionCytokinesisDeletion mutationsComplete assemblyMyosin VConstriction rateGenesMutationsCellsFilaments
2014
Local and global analysis of endocytic patch dynamics in fission yeast using a new “temporal superresolution” realignment method
Berro J, Pollard TD. Local and global analysis of endocytic patch dynamics in fission yeast using a new “temporal superresolution” realignment method. Molecular Biology Of The Cell 2014, 25: 3501-3514. PMID: 25143395, PMCID: PMC4230612, DOI: 10.1091/mbc.e13-01-0004.Peer-Reviewed Original ResearchConceptsFission yeastEndocytic actin patchesWild-type cellsEndocytic patchesActin patchesQuantitative microscopyActin assemblyCellular processesVesicle movementEndocytic vesiclesInterphase cellsVesicle formationMolecular mechanismsPatch dynamicsYeastCell lengthGlobal analysisNumber of patchesMicroscopy moviesCellsClathrinEndocytosisNew toolValuable toolPatches
2007
Assembly Mechanism of the Contractile Ring for Cytokinesis by Fission Yeast
Vavylonis D, Wu JQ, Hao S, O'Shaughnessy B, Pollard TD. Assembly Mechanism of the Contractile Ring for Cytokinesis by Fission Yeast. Science 2007, 319: 97-100. PMID: 18079366, DOI: 10.1126/science.1151086.Peer-Reviewed Original ResearchConceptsContractile ringActin filamentsLive fission yeast cellsIndividual daughter cellsFission yeast cellsDynamic actin filamentsFission yeastMotor protein myosinCell equatorDaughter cellsYeast cellsAssembly mechanismProtein myosinFluorescence microscopyCytokinesisMyosinFilamentsTransient connectionsCellsYeastFungiMechanismMeshwork