2023
Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions
de Arce K, Ribic A, Chowdhury D, Watters K, Thompson G, Sanganahalli B, Lippard E, Rohlmann A, Strittmatter S, Missler M, Hyder F, Biederer T. Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions. Nature Communications 2023, 14: 459. PMID: 36709330, PMCID: PMC9884278, DOI: 10.1038/s41467-023-36042-w.Peer-Reviewed Original ResearchConceptsPrefrontal cortexDKO miceSynCAM 1Aberrant neuronal activityDendritic spine numberPrefrontal cortex synapsesSynapse organizersSynapse numberMature brainNeuronal activityKnockout miceSpine numberSynapse developmentCognitive functionTrans-synaptic complexesImmunoglobulin family membersMiceFamily membersSynapsesLRRTM1Behavioral domainsHippocampusCognitive tasksConcerted roleCortex
2021
Synaptic recognition molecules in development and disease
Chowdhury D, Watters K, Biederer T. Synaptic recognition molecules in development and disease. Current Topics In Developmental Biology 2021, 142: 319-370. PMID: 33706921, PMCID: PMC8632550, DOI: 10.1016/bs.ctdb.2020.12.009.ChaptersConceptsSingle-cell expression studiesRecognition moleculesRecognition factorsKey protein familiesPost-translational modificationsLeucine-rich repeatsCell expression studiesSemaphorin/PlexinAlternative splicingProtein familyProteomic approachCombinatorial actionMolecular playersPartner recognitionExpression studiesMolecular themesSpecific expressionDisease relevanceSynapse specificationVertebrate brainImmunoglobulin SuperfamilyRich repertoireAppropriate brain regionsNeuron type-specific expressionSynaptic wiring
2019
SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse
Koopmans F, van Nierop P, Andres-Alonso M, Byrnes A, Cijsouw T, Coba M, Cornelisse L, Farrell R, Goldschmidt H, Howrigan D, Hussain N, Imig C, de Jong A, Jung H, Kohansalnodehi M, Kramarz B, Lipstein N, Lovering R, MacGillavry H, Mariano V, Mi H, Ninov M, Osumi-Sutherland D, Pielot R, Smalla K, Tang H, Tashman K, Toonen R, Verpelli C, Reig-Viader R, Watanabe K, van Weering J, Achsel T, Ashrafi G, Asi N, Brown T, De Camilli P, Feuermann M, Foulger R, Gaudet P, Joglekar A, Kanellopoulos A, Malenka R, Nicoll R, Pulido C, de Juan-Sanz J, Sheng M, Südhof T, Tilgner H, Bagni C, Bayés À, Biederer T, Brose N, Chua J, Dieterich D, Gundelfinger E, Hoogenraad C, Huganir R, Jahn R, Kaeser P, Kim E, Kreutz M, McPherson P, Neale B, O'Connor V, Posthuma D, Ryan T, Sala C, Feng G, Hyman S, Thomas P, Smit A, Verhage M. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse. Neuron 2019, 103: 217-234.e4. PMID: 31171447, PMCID: PMC6764089, DOI: 10.1016/j.neuron.2019.05.002.Peer-Reviewed Original ResearchSynaptic Connectivity and Cortical Maturation Are Promoted by the ω-3 Fatty Acid Docosahexaenoic Acid
Carbone BE, Abouleish M, Watters KE, Vogel S, Ribic A, Schroeder OH, Bader BM, Biederer T. Synaptic Connectivity and Cortical Maturation Are Promoted by the ω-3 Fatty Acid Docosahexaenoic Acid. Cerebral Cortex 2019, 30: 226-240. PMID: 31034037, DOI: 10.1093/cercor/bhz083.Peer-Reviewed Original ResearchConceptsVisual acuityDietary DHASynaptic connectivityFatty Acid Docosahexaenoic AcidVivo electrophysiological recordingsSize of synapsesEarly neuronal differentiationDose-dependent mannerFatty acid DHACortical maturationYoung miceAwake miceDendritic arborsCultured neuronsDHA's roleVisual cortexFunctional maturationPostsynaptic specializationsElectrophysiological recordingsCortical processingBrain developmentDocosahexaenoic acidAcid DHAPostnatal stagesNeuronal differentiationSynapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1
Ribic A, Crair MC, Biederer T. Synapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1. Cell Reports 2019, 26: 381-393.e6. PMID: 30625321, PMCID: PMC6345548, DOI: 10.1016/j.celrep.2018.12.069.Peer-Reviewed Original ResearchConceptsCortical plasticityCell adhesion molecule-1Critical periodJuvenile-like plasticityAdhesion molecule-1Primary visual cortexVisual critical periodThalamocortical inputsCortical maturationCircuit maturationV1 plasticityParvalbumin interneuronsFeedforward inhibitionSynaptic cell adhesion molecule 1Cell-autonomous mechanismsBrief lossCortical responsesSynaptic lociMolecule-1Visual cortexSynaptic factorsInterneuronsSpecific knockdownAdulthoodEyes
2017
Transcellular Nanoalignment of Synaptic Function
Biederer T, Kaeser PS, Blanpied TA. Transcellular Nanoalignment of Synaptic Function. Neuron 2017, 96: 680-696. PMID: 29096080, PMCID: PMC5777221, DOI: 10.1016/j.neuron.2017.10.006.Peer-Reviewed Original Research
2016
Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1
Park KA, Ribic A, Gaupp F, Coman D, Huang Y, Dulla CG, Hyder F, Biederer T. Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1. Journal Of Neuroscience 2016, 36: 7464-7475. PMID: 27413156, PMCID: PMC4945666, DOI: 10.1523/jneurosci.0189-16.2016.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCA3 Region, HippocampalCell Adhesion Molecule-1Cell Adhesion MoleculesConditioning, ClassicalFearFemaleGABA AntagonistsGene Expression RegulationImmunoglobulinsIn Vitro TechniquesMaleMemory DisordersMiceMice, Inbred C57BLMice, KnockoutNeural InhibitionNeural PathwaysParvalbuminsPyridazinesSynapsesSynaptic PotentialsTime FactorsConceptsDiffusion tensor imagingHippocampal CA3 areaKO miceMagnetic resonance imagingExcitatory inputsFeedforward inhibitionSynCAM 1Pyramidal neuronsNetwork excitabilityCA3 areaMossy fibersExcitatory mossy fiber inputBrain regionsTensor imagingHippocampal CA3 circuitsParvalbumin-positive interneuronsCA3 pyramidal neuronsPV-positive interneuronsExcitatory synaptic driveKnock-out (KO) miceDevelopment of synapsesDifferent neuronal populationsMossy fiber inputsDistinct brain regionsSynaptic imbalance
2015
Topographic Mapping of the Synaptic Cleft into Adhesive Nanodomains
de Arce K, Schrod N, Metzbower SWR, Allgeyer E, Kong G, Tang AH, Krupp AJ, Stein V, Liu X, Bewersdorf J, Blanpied TA, Lucić V, Biederer T. Topographic Mapping of the Synaptic Cleft into Adhesive Nanodomains. Neuron 2015, 88: 1165-1172. PMID: 26687224, PMCID: PMC4687029, DOI: 10.1016/j.neuron.2015.11.011.Peer-Reviewed Original ResearchConceptsSynaptic cell adhesion molecule 1Trans-synaptic complexesEphB2 receptor tyrosine kinaseReceptor tyrosine kinasesCryo-ETSynaptic cleftCryoelectron tomographyTyrosine kinaseMolecular insightsSynCAM 1Macromolecular organizationImmunoglobulin proteinCell adhesion molecule-1Immunoelectron microscopyAdhesion molecule-1Super-resolution imagingPostsynaptic densityDistinct density profilesDepression paradigmExcitatory synapsesPostsynaptic areaMolecule-1Cleft edgesSynapsesCleft
2014
Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1
Ribic A, Liu X, Crair MC, Biederer T. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1. The Journal Of Comparative Neurology 2014, 522: 900-920. PMID: 23982969, PMCID: PMC3947154, DOI: 10.1002/cne.23452.Peer-Reviewed Original ResearchMeSH KeywordsAlcohol OxidoreductasesAnalysis of VarianceAnimalsAnimals, NewbornCell Adhesion Molecule-1Cell Adhesion MoleculesCo-Repressor ProteinsDNA-Binding ProteinsElectroretinographyFemaleGene Expression Regulation, DevelopmentalImmunoglobulinsMaleMiceMice, Inbred C57BLMice, KnockoutMicroscopy, ImmunoelectronNerve Tissue ProteinsPhosphoproteinsReceptors, Metabotropic GlutamateRetinaRetinal Rod Photoreceptor CellsSynapsesVesicular Glutamate Transport Protein 1ConceptsCell adhesion molecule-1Adhesion molecule-1Ribbon synapsesKO retinasSynaptic cell adhesion molecule 1Molecule-1Mouse photoreceptor ribbon synapsesInner retinal layersPhotoreceptor ribbon synapsesRod visual pathwayEarly postnatal stagesPlexiform layerKO micePhotoreceptor synapsesSynaptic organizationExcitatory synapsesQuantitative ultrastructural analysisRetinal layersKnockout miceOuter nuclearVisual pathwaySynapse developmentElectroretinogram recordingsPostnatal stagesAdhesion molecules
2012
The novel synaptogenic protein Farp1 links postsynaptic cytoskeletal dynamics and transsynaptic organization
Cheadle L, Biederer T. The novel synaptogenic protein Farp1 links postsynaptic cytoskeletal dynamics and transsynaptic organization. Journal Of Cell Biology 2012, 199: 985-1001. PMID: 23209303, PMCID: PMC3518221, DOI: 10.1083/jcb.201205041.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsCell Adhesion Molecule-1Cell Adhesion MoleculesCytoskeletal ProteinsCytoskeletonDendritic SpinesGuanine Nucleotide Exchange FactorsHEK293 CellsHippocampusHumansImmunoglobulinsMiceMice, KnockoutNeurogenesisNeuronsNeuropeptidesProtein BindingProtein Structure, TertiaryProteomicsRac GTP-Binding ProteinsRac1 GTP-Binding ProteinRho Guanine Nucleotide Exchange FactorsSignal TransductionSynapsesConceptsSynCAM 1Synapse developmentF-actin assemblyCytoskeletal dynamicsGTPase Rac1Retrograde signalsSynaptic adhesionFARP1Transsynaptic interactionsFilopodial dynamicsProtein 1Synapse formationSynaptic complexImmature neuronsSpine densitySpine morphologySynapse numberPathwayKnockout miceSynaptic membranesPleckstrinFERMRac1The Synaptic Adhesion Molecule SynCAM 1 Contributes to Cocaine Effects on Synapse Structure and Psychostimulant Behavior
Giza JI, Jung Y, Jeffrey RA, Neugebauer NM, Picciotto MR, Biederer T. The Synaptic Adhesion Molecule SynCAM 1 Contributes to Cocaine Effects on Synapse Structure and Psychostimulant Behavior. Neuropsychopharmacology 2012, 38: 628-638. PMID: 23169347, PMCID: PMC3572459, DOI: 10.1038/npp.2012.226.Peer-Reviewed Original ResearchConceptsNucleus accumbensDrugs of abuseSynCAM 1Cocaine effectsSynapse structureMushroom-type spinesExcitatory synapse numberMedium spiny neuronsAddiction-related behaviorsKO miceSpiny neuronsStubby spinesSynapse numberAdhesion molecule proteinsExcitatory synapsesCocaine administrationTrans-synaptic interactionsKnockout micePsychostimulant effectsNAc synapsesStructural remodelingTherapeutic interventionsSynaptic cleftPsychostimulant cocaineSynapse development
2011
Lateral assembly of the immunoglobulin protein SynCAM 1 controls its adhesive function and instructs synapse formation
Fogel AI, Stagi M, Perez de Arce K, Biederer T. Lateral assembly of the immunoglobulin protein SynCAM 1 controls its adhesive function and instructs synapse formation. The EMBO Journal 2011, 30: 4728-4738. PMID: 21926970, PMCID: PMC3243608, DOI: 10.1038/emboj.2011.336.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell AdhesionCell Adhesion Molecule-1Cell Adhesion MoleculesCell Adhesion Molecules, NeuronalCell DifferentiationCells, CulturedChlorocebus aethiopsCoculture TechniquesCOS CellsFluorescence Resonance Energy TransferHEK293 CellsHippocampusHumansImmunoglobulinsImmunohistochemistryMiceNeuritesProtein Structure, QuaternarySynapsesConceptsSynCAM 1Specialized adhesion sitesSynapse formationTrans-synaptic interactionsSynaptic cleftCI assemblyProtein complexesSynaptic cell adhesion molecule SynCAM 1Adhesion sitesSynaptogenic activityAdhesive functionSynapse developmentStructural organizationNovel insightsSynapse inductionLateral assemblyAdhesive capacityAdhesion moleculesSynaptic morphologyAdhesive mechanismsOligomerizationAssemblyAxo-dendritic contactsCleftLater stages
2010
SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning
Robbins EM, Krupp AJ, de Arce K, Ghosh AK, Fogel AI, Boucard A, Südhof TC, Stein V, Biederer T. SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning. Neuron 2010, 68: 894-906. PMID: 21145003, PMCID: PMC3026433, DOI: 10.1016/j.neuron.2010.11.003.Peer-Reviewed Original ResearchConceptsSynapse numberSynCAM 1Excitatory synapse numberLong-term depressionActivity-dependent changesTransgenic brainsExcitatory synapsesMature synapsesTransgenic miceNeuronal connectivityNeuronal circuitsSynapse developmentSpatial learningAdhesion moleculesNeuronal networksSynapsesAdult networksMiceBrainOverexpressionPlasticityExpressionSynaptogenesis
2007
SynCAMs Organize Synapses through Heterophilic Adhesion
Fogel AI, Akins MR, Krupp AJ, Stagi M, Stein V, Biederer T. SynCAMs Organize Synapses through Heterophilic Adhesion. Journal Of Neuroscience 2007, 27: 12516-12530. PMID: 18003830, PMCID: PMC6673342, DOI: 10.1523/jneurosci.2739-07.2007.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell AdhesionCell Adhesion MoleculesCell Adhesion Molecules, NeuronalCell DifferentiationCell LineCells, CulturedCoculture TechniquesHippocampusHumansImmunoglobulinsMacromolecular SubstancesMiceNeural PathwaysPresynaptic TerminalsProtein IsoformsRatsRats, Sprague-DawleySynapsesSynaptic MembranesSynaptic TransmissionTumor Suppressor ProteinsConceptsAdhesion complexesDivergent expression profilesImmunoglobulin superfamily memberHeterophilic complexesProtein familyPosttranslational modificationsHeterophilic adhesionSuperfamily membersCell adhesion moleculeSynapse organizationExpression profilesSynapse developmentSynCAM 1Cell junctionsActive presynaptic terminalsPostsynaptic sideMolecular compositionAdhesion moleculesAdhesive patternsProteinSynaptic cleftPresynaptic terminalsComplexesExcitatory neurotransmissionFunctional synapsesMixed-culture assays for analyzing neuronal synapse formation
Biederer T, Scheiffele P. Mixed-culture assays for analyzing neuronal synapse formation. Nature Protocols 2007, 2: 670-676. PMID: 17406629, DOI: 10.1038/nprot.2007.92.Peer-Reviewed Original ResearchConceptsVertebrate central nervous systemIndividual cell surface proteinsSynaptic adhesion complexesCell biological mechanismsPostsynaptic membrane domainsCell surface proteinsAssembly of synapsesAdhesion complexesMembrane domainsNeuronal synapse formationIndividual proteinsSynaptogenic activityGenetic studiesBidirectional signalingPrimary neuronal culturesSynapse formationSynaptic differentiationMixed culture assayBiological mechanismsSynaptic structureProteinNew insightsSynaptic cleftNeuronal culturesAssay system
2002
SynCAM, a Synaptic Adhesion Molecule That Drives Synapse Assembly
Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Südhof T. SynCAM, a Synaptic Adhesion Molecule That Drives Synapse Assembly. Science 2002, 297: 1525-1531. PMID: 12202822, DOI: 10.1126/science.1072356.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBrainBrain ChemistryCell Adhesion MoleculesCell Adhesion Molecules, NeuronalCell LineCoculture TechniquesExocytosisHumansImmunoglobulinsMolecular Sequence DataNeuronsProsencephalonProtein Structure, TertiaryRatsReceptors, AMPARecombinant Fusion ProteinsSequence Homology, Amino AcidSynapsesSynaptic TransmissionTransfectionTumor Suppressor ProteinsConceptsSynapse assemblyHomophilic cell adhesion moleculeDomain-containing proteinsPDZ domain proteinsNonneuronal cellsAdhesion moleculesSynaptic adhesion moleculesImmunoglobulin domain-containing proteinsGlutamate receptorsCoordinated assemblyCytoplasmic tailCell adhesion moleculeGlutamatergic synaptic transmissionSynapse formationPostsynaptic specializationsPostsynaptic responsesHippocampal neuronsSynaptic transmissionProteinNerve cellsAssemblyCellsExpressionTight attachmentNeurons