2014
A temperature hypothesis of hypothalamus-driven obesity.
Horvath TL, Stachenfeld NS, Diano S. A temperature hypothesis of hypothalamus-driven obesity. The Yale Journal Of Biology And Medicine 2014, 87: 149-58. PMID: 24910560, PMCID: PMC4031788.Commentaries, Editorials and LettersConceptsTreatment of obesityWhite adipose tissueEtiology of obesityBrain temperature controlHealth care systemSustained obesityObesity developmentPeripheral tissuesMetabolic disordersLarge financial burdenObesityAdipose tissueMedical strategiesExcess fatMetabolic centersPsychological symptomsLength of lifeCare systemFinancial burdenMetabolic stateTissueVast majorityPatientsEtiologySymptoms
2011
Ghrelin-induced hypothermia: A physiological basis but no clinical risk
Wiedmer P, Strasser F, Horvath TL, Blum D, DiMarchi R, Lutz T, Schürmann A, Joost HG, Tschöp MH, Tong J. Ghrelin-induced hypothermia: A physiological basis but no clinical risk. Physiology & Behavior 2011, 105: 43-51. PMID: 21513721, PMCID: PMC3146973, DOI: 10.1016/j.physbeh.2011.03.027.Peer-Reviewed Original ResearchConceptsGhrelin treatmentBody temperatureApplication of ghrelinMedial preoptic areaPotential anatomical basisCold-sensitive neuronsGhrelin infusionBody core temperatureChronic i.Positive energy balanceGhrelin receptorPreoptic areaAxon terminalsClinical riskFood intakeGhrelinHealthy humansSerious hypothermiaMale subjectsPhysiologic circumstancesAnatomical basisHypothermiaCold exposureRelevant decreaseEnergy expenditure
2007
Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure
Pfluger PT, Kirchner H, Günnel S, Schrott B, Perez-Tilve D, Fu S, Benoit SC, Horvath T, Joost HG, Wortley KE, Sleeman MW, Tschöp M. Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure. AJP Gastrointestinal And Liver Physiology 2007, 294: g610-g618. PMID: 18048479, DOI: 10.1152/ajpgi.00321.2007.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAnimalsAnthropometryBlood GlucoseBody CompositionBody TemperatureBody WeightEatingEnergy MetabolismGene DeletionGenotypeGhrelinGlucose Tolerance TestInsulin ResistanceLigandsLipidsMiceMice, KnockoutMotor ActivityReceptors, GhrelinReverse Transcriptase Polymerase Chain ReactionRNA, MessengerConceptsFood intakeSimultaneous deletionStandard dietHigh-fat diet-induced obesityMotor activityWild-type control miceFirst mouse mutantsMetabolic phenotypeDiet-induced obesityEnergy metabolism phenotypesEnergy expenditureGene-deficient miceKnockout mice exhibitSingle gene-deficient miceSame genetic backgroundMost speciesWT miceControl miceStandard chowMolecular controlBody adiposityBiological roleLean massMouse mutantsMeal patterns
2003
Uncoupling proteins-2 and 3 influence obesity and inflammation in transgenic mice
Horvath TL, Diano S, Miyamoto S, Barry S, Gatti S, Alberati D, Livak F, Lombardi A, Moreno M, Goglia F, Mor G, Hamilton J, Kachinskas D, Horwitz B, Warden CH. Uncoupling proteins-2 and 3 influence obesity and inflammation in transgenic mice. International Journal Of Obesity 2003, 27: 433-442. PMID: 12664076, DOI: 10.1038/sj.ijo.0802257.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsBasal MetabolismBlotting, NorthernBlotting, WesternBody TemperatureCarrier ProteinsCholesterol, LDLEnergy IntakeGene Expression RegulationHeart RateInflammationIon ChannelsMaleMembrane Transport ProteinsMiceMice, Inbred C57BLMice, TransgenicMitochondriaMitochondrial ProteinsObesityProteinsUncoupling Protein 2Uncoupling Protein 3ConceptsTransgenic miceFat massLow-density lipoprotein cholesterol levelsHeterozygous miceAgouti obese miceHypothalamic neuropeptide levelsSpontaneous physical activityLipoprotein cholesterol levelsNontransgenic littermate controlsFat pad weightEndotoxin-induced feverWild-type littermatesHuman UCP2Significant differencesMechanism of actionLDL cholesterolControl miceFemale transgenicsNontransgenic littermatesObese miceEndotoxin injectionCholesterol levelsPad weightNeuropeptide levelsFood intake
1999
Brain Uncoupling Protein 2: Uncoupled Neuronal Mitochondria Predict Thermal Synapses in Homeostatic Centers
Horvath T, Warden C, Hajos M, Lombardi A, Goglia F, Diano S. Brain Uncoupling Protein 2: Uncoupled Neuronal Mitochondria Predict Thermal Synapses in Homeostatic Centers. Journal Of Neuroscience 1999, 19: 10417-10427. PMID: 10575039, PMCID: PMC6782406, DOI: 10.1523/jneurosci.19-23-10417.1999.Peer-Reviewed Original ResearchConceptsC-Fos-expressing cellsPeripheral energy homeostasisHormone-releasing hormoneHypothalamic neuronal populationsCorticotropin-releasing factorMelanin-concentrating hormoneMitochondria of neuronsUCP2 proteinPeripheral hormonesProximal dendritesNeuropeptide YGonadal steroidsModulates neurotransmissionAxon terminalsBasal brainLocal brainNeuronal populationsAxonal processesNeuronal mitochondriaPeptidergic circuitsBrain circuitsEnergy homeostasisCold exposureNeuronsEndocrine processes