2012
Neuroendocrine Regulation of Energy Metabolism
Dietrich M, Horvath T. Neuroendocrine Regulation of Energy Metabolism. Endocrinology And Metabolism 2012, 27: 268-273. DOI: 10.3803/enm.2012.27.4.268.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsPeripheral metabolic signalsEnergy expenditureBrain homeostatic systemsMechanism of actionBrain involvementChronic regulationPharmacological techniquesNeuronal controlNeuroendocrine regulationNeuronal mechanismsEnergy homeostasisComplex feeding behaviorHomeostatic systemMetabolic signalsReview articleFeeding behaviorInvolvementCurrent understandingBrain
2007
Neurobiology of Feeding and Energy Expenditure
Gao Q, Horvath TL. Neurobiology of Feeding and Energy Expenditure. Annual Review Of Neuroscience 2007, 30: 367-398. PMID: 17506645, DOI: 10.1146/annurev.neuro.30.051606.094324.Peer-Reviewed Original ResearchConceptsEnergy expenditureNeurobiology of feedingPeripheral metabolic signalsBrain homeostatic systemsMechanism of actionBrain involvementChronic regulationPharmacological techniquesNeuronal controlNeuronal mechanismsEnergy homeostasisComplex feeding behaviorHomeostatic systemMetabolic signalsFeeding behaviorInvolvementCurrent understandingBrain
2003
Uncoupling proteins-2 and 3 influence obesity and inflammation in transgenic mice
Horvath TL, Diano S, Miyamoto S, Barry S, Gatti S, Alberati D, Livak F, Lombardi A, Moreno M, Goglia F, Mor G, Hamilton J, Kachinskas D, Horwitz B, Warden CH. Uncoupling proteins-2 and 3 influence obesity and inflammation in transgenic mice. International Journal Of Obesity 2003, 27: 433-442. PMID: 12664076, DOI: 10.1038/sj.ijo.0802257.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsBasal MetabolismBlotting, NorthernBlotting, WesternBody TemperatureCarrier ProteinsCholesterol, LDLEnergy IntakeGene Expression RegulationHeart RateInflammationIon ChannelsMaleMembrane Transport ProteinsMiceMice, Inbred C57BLMice, TransgenicMitochondriaMitochondrial ProteinsObesityProteinsUncoupling Protein 2Uncoupling Protein 3ConceptsTransgenic miceFat massLow-density lipoprotein cholesterol levelsHeterozygous miceAgouti obese miceHypothalamic neuropeptide levelsSpontaneous physical activityLipoprotein cholesterol levelsNontransgenic littermate controlsFat pad weightEndotoxin-induced feverWild-type littermatesHuman UCP2Significant differencesMechanism of actionLDL cholesterolControl miceFemale transgenicsNontransgenic littermatesObese miceEndotoxin injectionCholesterol levelsPad weightNeuropeptide levelsFood intakeThe Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis
Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia-Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Cone RD, Horvath TL. The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis. Neuron 2003, 37: 649-661. PMID: 12597862, DOI: 10.1016/s0896-6273(03)00063-1.Peer-Reviewed Original ResearchMeSH KeywordsAgouti-Related ProteinAnimalsCentral Nervous SystemCorticotropin-Releasing HormoneEnergy MetabolismFemaleGhrelinHomeostasisHypothalamusIn Vitro TechniquesIntercellular Signaling Peptides and ProteinsLuminescent ProteinsMiceMice, KnockoutMice, TransgenicNerve NetNeuronsNeuropeptide YOrgan SpecificityParaventricular Hypothalamic NucleusPatch-Clamp TechniquesPeptide HormonesPresynaptic TerminalsPro-OpiomelanocortinProtein BindingProtein BiosynthesisProteinsRatsConceptsCorticotropin-releasing hormoneNeuropeptide YNPY neuronsHypothalamic circuitsGastrointestinal peptide hormone ghrelinEffects of NPYEnergy homeostasisArcuate NPY neuronsRelease of ghrelinExpression of ghrelinMechanism of actionPeptide hormone ghrelinHypothalamic actionOrexigenic peptideHypothalamic nucleiHormone ghrelinParaventricular nucleusProopiomelanocortin (POMC) productsThird ventricleGhrelinPresynaptic terminalsElectrophysiological recordingsNeuronsHypothalamusHomeostasis
1996
Morphological and pharmacological evidence for neuropeptide Y-galanin interaction in the rat hypothalamus
Horvath TL, Naftolin F, Leranth C, Sahu A, Kalra SP. Morphological and pharmacological evidence for neuropeptide Y-galanin interaction in the rat hypothalamus. Endocrinology 1996, 137: 3069-3077. PMID: 8770933, DOI: 10.1210/endo.137.7.8770933.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsArcuate Nucleus of HypothalamusAxonsCerebral VentriclesColchicineDendritesEstradiolEstrusFemaleGalaninHypothalamusHypothalamus, AnteriorImmunoenzyme TechniquesImmunohistochemistryLuteinizing HormoneMicroscopy, ImmunoelectronNeuronsNeuropeptide YOvariectomyParaventricular Hypothalamic NucleusPreoptic AreaProgesteroneRatsRats, Sprague-DawleySignal TransductionSubstance PSupraoptic NucleusConceptsNeuropeptide YMedial preoptic areaLH releaseGAL neuronsArcuate nucleusIntraventricular injectionParaventricular nucleusPreoptic areaSupraoptic nucleusSynaptic connectionsBasal LH releaseNPY-immunoreactive axonsPituitary hormone secretionPituitary gonadotropin releaseRelease of gonadotropinsMicroscopic examinationHypothalamic peptidergic systemsPeroxidase-antiperoxidase techniqueAvidin-biotin peroxidaseLight microscopic examinationMechanism of actionDiaminobenzidine reactionGAL releaseNPY inputNPY administration