2021
Drp1 is required for AgRP neuronal activity and feeding
Jin S, Yoon NA, Liu ZW, Song JE, Horvath TL, Kim JD, Diano S. Drp1 is required for AgRP neuronal activity and feeding. ELife 2021, 10: e64351. PMID: 33689681, PMCID: PMC7946429, DOI: 10.7554/elife.64351.Peer-Reviewed Original ResearchConceptsAgRP neuronal activityFatty acid oxidationAgRP neuronsNeuronal activityAgRP neuronal functionHypothalamic AgRP neuronsBody weight regulationMitochondrial fatty acid utilizationWhole-body energy homeostasisHypothalamic orexigenic agoutiFatty acid utilizationAcid oxidationFat massCKO miceNeuronal activationPeptide-1Body weightNeuronal functionOrexigenic agoutiEnergy homeostasisMitochondrial fissionSignificant decreaseEnergy expenditureNeuronsAcid utilization
2017
4.19 Obesity and Appetite: Central Control Mechanisms
Horvath T. 4.19 Obesity and Appetite: Central Control Mechanisms. 2017, 369-376. DOI: 10.1016/b978-0-12-803592-4.00085-7.Peer-Reviewed Original ResearchLate-onset chronic diseasesChronic diseasesPrevalence of obesitySerious comorbiditiesFat massTissue malignancyParkinson's diseaseCardiovascular disordersCentral control mechanismAlzheimer's diseaseDiseaseEpigenetic vulnerabilityCellular energy metabolismObesityVulnerable individualsEnergy metabolismAppetiteDisordersTissueDifferent tissuesComorbiditiesDiabetesMajor roleMalignancySatiety
2014
PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding
Long L, Toda C, Jeong JK, Horvath TL, Diano S. PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding. Journal Of Clinical Investigation 2014, 124: 4017-4027. PMID: 25083994, PMCID: PMC4151211, DOI: 10.1172/jci76220.Peer-Reviewed Original ResearchConceptsHigh-fat dietPOMC neuronsFood intakeImproved glucose metabolismHigh-fat feedingWhole-body energy balanceBody weight gainProopiomelanocortin neuronsPeripheral administrationFat massLeptin sensitivityControl animalsGlucose metabolismBody weightPPARγ activatorsLocomotor activityEnergy homeostasisPPARγWeight gainNeuronsSelective ablationEnergy expenditureIntakeNuclear receptorsMice
2013
The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry
Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Brönneke HS, Dietrich MO, Jordan SD, Saletore Y, Elemento O, Belgardt BF, Franz T, Horvath TL, Rüther U, Jaffrey SR, Kloppenburg P, Brüning JC. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nature Neuroscience 2013, 16: 1042-1048. PMID: 23817550, DOI: 10.1038/nn.3449.Peer-Reviewed Original ResearchMeSH KeywordsAdenineAlpha-Ketoglutarate-Dependent Dioxygenase FTOAnimalsCocaineCorpus StriatumDopamineDopaminergic NeuronsExploratory BehaviorFemaleG Protein-Coupled Inwardly-Rectifying Potassium ChannelsLocomotionMaleMesencephalonMethylationMethyltransferasesMiceMice, Inbred C57BLMice, KnockoutMixed Function OxygenasesOxo-Acid-LyasesPhenotypeQuinpiroleReceptors, Dopamine D2Receptors, Dopamine D3RewardRNA Processing, Post-TranscriptionalRNA, MessengerSignal Transduction
2010
Agrp Neurons Mediate Sirt1's Action on the Melanocortin System and Energy Balance: Roles for Sirt1 in Neuronal Firing and Synaptic Plasticity
Dietrich MO, Antunes C, Geliang G, Liu ZW, Borok E, Nie Y, Xu AW, Souza DO, Gao Q, Diano S, Gao XB, Horvath TL. Agrp Neurons Mediate Sirt1's Action on the Melanocortin System and Energy Balance: Roles for Sirt1 in Neuronal Firing and Synaptic Plasticity. Journal Of Neuroscience 2010, 30: 11815-11825. PMID: 20810901, PMCID: PMC2965459, DOI: 10.1523/jneurosci.2234-10.2010.Peer-Reviewed Original ResearchConceptsFood intakeMelanocortin systemAgRP neuronal activityAnorexigenic POMC neuronsHypothalamic melanocortin systemAction of SIRT1Negative energy balanceAgRP neuronsPOMC neuronsCre-lox technologyInhibitory toneMC4R antagonistFat massLean massSynaptic inputsNeuronal activityNeuronal firingAdult miceBody weightSIRT1 inhibitorSynaptic plasticityCalorie restrictionMelanocortin receptorsSIRT1 activityBody metabolism
2005
Obesity and the Neuroendocrine Control of Energy Homeostasis: The Role of Spontaneous Locomotor Activity 1
Castañeda TR, Jürgens H, Wiedmer P, Pfluger P, Diano S, Horvath TL, Tang-Christensen M, Tschöp MH. Obesity and the Neuroendocrine Control of Energy Homeostasis: The Role of Spontaneous Locomotor Activity 1. Journal Of Nutrition 2005, 135: 1314-1319. PMID: 15867332, DOI: 10.1093/jn/135.5.1314.Peer-Reviewed Original ResearchConceptsSpontaneous physical activityWidespread sedentary lifestylesIntolerable side effectsPrevalence of obesityFat mass accumulationCause of deathUrgent global health threatGlobal health threatSafe therapyFat massPharmacological reductionPhysical activitySedentary lifestyleSide effectsEnergy intakeNeuroendocrine factorsNeuroendocrine controlEnergy homeostasisObesityHealth threatMajor predictorActivity 1Molecular mechanismsLow levelsMajor contributor
2003
Endocannabinoids and the regulation of body fat: the smoke is clearing
Horvath TL. Endocannabinoids and the regulation of body fat: the smoke is clearing. Journal Of Clinical Investigation 2003, 112: 323-326. PMID: 12897199, PMCID: PMC166302, DOI: 10.1172/jci19376.Peer-Reviewed Original ResearchUncoupling proteins-2 and 3 influence obesity and inflammation in transgenic mice
Horvath TL, Diano S, Miyamoto S, Barry S, Gatti S, Alberati D, Livak F, Lombardi A, Moreno M, Goglia F, Mor G, Hamilton J, Kachinskas D, Horwitz B, Warden CH. Uncoupling proteins-2 and 3 influence obesity and inflammation in transgenic mice. International Journal Of Obesity 2003, 27: 433-442. PMID: 12664076, DOI: 10.1038/sj.ijo.0802257.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsBasal MetabolismBlotting, NorthernBlotting, WesternBody TemperatureCarrier ProteinsCholesterol, LDLEnergy IntakeGene Expression RegulationHeart RateInflammationIon ChannelsMaleMembrane Transport ProteinsMiceMice, Inbred C57BLMice, TransgenicMitochondriaMitochondrial ProteinsObesityProteinsUncoupling Protein 2Uncoupling Protein 3ConceptsTransgenic miceFat massLow-density lipoprotein cholesterol levelsHeterozygous miceAgouti obese miceHypothalamic neuropeptide levelsSpontaneous physical activityLipoprotein cholesterol levelsNontransgenic littermate controlsFat pad weightEndotoxin-induced feverWild-type littermatesHuman UCP2Significant differencesMechanism of actionLDL cholesterolControl miceFemale transgenicsNontransgenic littermatesObese miceEndotoxin injectionCholesterol levelsPad weightNeuropeptide levelsFood intake