2008
Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia
Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, Yamanaka A, Diano S, Horvath TL, Sakurai T, Toll L, Kilduff TS. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. Journal Of Clinical Investigation 2008, 118: 2471-2481. PMID: 18551194, PMCID: PMC2423866, DOI: 10.1172/jci35115.Peer-Reviewed Original ResearchMeSH KeywordsAnalgesiaAnimalsAtaxin-3Behavior, AnimalBrainCalciumCytoplasmElectrophysiologyFemaleHypothalamus, PosteriorImmunohistochemistryIntracellular Signaling Peptides and ProteinsMaleMembrane PotentialsMiceMice, Inbred C57BLMice, TransgenicNarcotic AntagonistsNeuronsNeuropeptidesNociceptin ReceptorNuclear ProteinsOpioid PeptidesOrexinsPain ThresholdPresynaptic TerminalsReaction TimeReceptors, OpioidStress, PhysiologicalTetrodotoxinTranscription FactorsConceptsStress-induced analgesiaHcrt neuronsWild-type miceHypocretin/orexinNociceptin/orphanin FQMouse hypothalamic slicesCorticotropin-releasing factorPatch-clamp recordingsOrexin/ataxinPostsynaptic effectsPresynaptic releaseOrphanin FQElectron microscopic levelHypothalamic slicesSynaptic contactsHcrt-1Hcrt systemMouse modelAnalgesiaClamp recordingsPeptidergic systemsAction potentialsBrain tissueNeuronsInput resistance
2004
Interaction between the Corticotropin-Releasing Factor System and Hypocretins (Orexins): A Novel Circuit Mediating Stress Response
Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, Kilduff TS, Horvath TL, de Lecea L. Interaction between the Corticotropin-Releasing Factor System and Hypocretins (Orexins): A Novel Circuit Mediating Stress Response. Journal Of Neuroscience 2004, 24: 11439-11448. PMID: 15601950, PMCID: PMC6730356, DOI: 10.1523/jneurosci.3459-04.2004.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsArousalBrainBrain ChemistryCorticotropin-Releasing HormoneFemaleHypothalamusImmunohistochemistryIn Vitro TechniquesIntracellular Signaling Peptides and ProteinsMaleMembrane PotentialsMiceMice, KnockoutNeural PathwaysNeuronsNeuropeptidesOrexin ReceptorsOrexinsReceptors, Corticotropin-Releasing HormoneReceptors, G-Protein-CoupledReceptors, NeuropeptideRecombinant Fusion ProteinsStress, PhysiologicalConceptsCorticotropin-releasing factorHypocretinergic neuronsHypocretin neuronsCorticotropin-Releasing Factor SystemCRF-immunoreactive terminalsHypocretin-expressing neuronsRelease of hypocretinsStability of arousalMaintenance of arousalHypocretinergic cellsHypothalamic slicesLateral hypothalamusAntagonist astressinHypocretinergic systemNeuropeptide hypocretinStressor stimuliPeptidergic systemsAcute stressHypocretinNeuronsStress responseFactor systemMembrane potentialPhysiological inputsActivation
1999
Brain Uncoupling Protein 2: Uncoupled Neuronal Mitochondria Predict Thermal Synapses in Homeostatic Centers
Horvath T, Warden C, Hajos M, Lombardi A, Goglia F, Diano S. Brain Uncoupling Protein 2: Uncoupled Neuronal Mitochondria Predict Thermal Synapses in Homeostatic Centers. Journal Of Neuroscience 1999, 19: 10417-10427. PMID: 10575039, PMCID: PMC6782406, DOI: 10.1523/jneurosci.19-23-10417.1999.Peer-Reviewed Original ResearchConceptsC-Fos-expressing cellsPeripheral energy homeostasisHormone-releasing hormoneHypothalamic neuronal populationsCorticotropin-releasing factorMelanin-concentrating hormoneMitochondria of neuronsUCP2 proteinPeripheral hormonesProximal dendritesNeuropeptide YGonadal steroidsModulates neurotransmissionAxon terminalsBasal brainLocal brainNeuronal populationsAxonal processesNeuronal mitochondriaPeptidergic circuitsBrain circuitsEnergy homeostasisCold exposureNeuronsEndocrine processes