Featured Publications
Sensational channels
Gracheva EO, Bagriantsev SN. Sensational channels. Cell 2021, 184: 6213-6216. PMID: 34942094, DOI: 10.1016/j.cell.2021.11.034.Peer-Reviewed Original ResearchPiezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors
Zheng W, Nikolaev YA, Gracheva EO, Bagriantsev SN. Piezo2 integrates mechanical and thermal cues in vertebrate mechanoreceptors. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 17547-17555. PMID: 31413193, PMCID: PMC6717272, DOI: 10.1073/pnas.1910213116.Peer-Reviewed Original ResearchA Cross-Species Analysis Reveals a General Role for Piezo2 in Mechanosensory Specialization of Trigeminal Ganglia from Tactile Specialist Birds
Schneider ER, Anderson EO, Feketa VV, Mastrotto M, Nikolaev YA, Gracheva EO, Bagriantsev SN. A Cross-Species Analysis Reveals a General Role for Piezo2 in Mechanosensory Specialization of Trigeminal Ganglia from Tactile Specialist Birds. Cell Reports 2019, 26: 1979-1987.e3. PMID: 30784581, PMCID: PMC6420409, DOI: 10.1016/j.celrep.2019.01.100.Peer-Reviewed Original ResearchConceptsTrigeminal ganglionPiezo2 ion channelsExpression of moleculesExpression of factorsPiezo2 expressionSomatosensory neuronsNeuronal subtypesSomatosensory systemSuch neuronsSpecialist birdsBird speciesMolecular variationFamily AnatidaeForaging behaviorTactile specializationNeuronsMechanoreceptorsSpecies analysisGangliaGeneral roleBehavioral phenotypesIon channelsGeneral mechanismTactile specialistsFunction of mechanoreceptors
2019
A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels
Zheng W, Gracheva EO, Bagriantsev SN. A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels. ELife 2019, 8: e44003. PMID: 30628892, PMCID: PMC6349400, DOI: 10.7554/elife.44003.Peer-Reviewed Original ResearchConceptsPiezo channelsLining inner helixIon channelsMechanosensitive Piezo channelsInner pore helixImportance of inactivationMouse Piezo1Disease-causing mutationsHydrophobic gateInner helixPore helixPhysiological processesMechanism of inactivationStimulation triggersInactivationInactivation gatePiezo1Normal functionHelixHydrophobic barrierFast inactivationPhysical constrictionSecondary gateRate of inactivationMajor determinant
2018
TMEM150C/Tentonin3 Is a Regulator of Mechano-gated Ion Channels
Anderson EO, Schneider ER, Matson JD, Gracheva EO, Bagriantsev SN. TMEM150C/Tentonin3 Is a Regulator of Mechano-gated Ion Channels. Cell Reports 2018, 23: 701-708. PMID: 29669276, PMCID: PMC5929159, DOI: 10.1016/j.celrep.2018.03.094.Peer-Reviewed Original Research
2017
Molecular basis of tactile specialization in the duck bill
Schneider ER, Anderson EO, Mastrotto M, Matson JD, Schulz VP, Gallagher PG, LaMotte RH, Gracheva EO, Bagriantsev SN. Molecular basis of tactile specialization in the duck bill. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: 13036-13041. PMID: 29109250, PMCID: PMC5724259, DOI: 10.1073/pnas.1708793114.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAvian ProteinsBeakChickensCloning, MolecularDucksEmbryo, NonmammalianGene ExpressionGenetic VectorsHEK293 CellsHumansIon ChannelsKineticsMechanoreceptorsMechanotransduction, CellularMicePatch-Clamp TechniquesRecombinant ProteinsRNA, Small InterferingSequence Homology, Amino AcidSpecies SpecificityTouchTouch PerceptionTrigeminal GanglionConceptsMolecular basisHeterologous expression systemSpecialist birdsMouse orthologPiezo2 ion channelsTactile specializationExpression systemDuck billMolecular characterizationIon channelsFeeding behaviorEdible matterPiezo2BirdsElectrophysiological characterizationSlow inactivation kineticsOrthologsVertebratesMechanoMechanotransductionKnockdownInactivation kineticsMurky watersHigh densityNeuronsChapter Seven Piezo2 in Cutaneous and Proprioceptive Mechanotransduction in VertebratesaaThis work was supported by grants from National Science Foundation (1453167), National Institutes of Health (1R01NS097547-01A1) and American Heart Association (14SDG17880015) to S.N.B. E.R.S. was partially supported by a training grant from National Institutes of Health T32HD007094 and a postdoctoral fellowship from the Arnold and Mabel Beckman Foundation. E.O.A. is a fellow of The Gruber Foundation and an Edward L. Tatum Fellow. Correspondence should be addressed to S.N.B (slav.bagriantsev@yale.edu).
Anderson E, Schneider E, Bagriantsev S. Chapter Seven Piezo2 in Cutaneous and Proprioceptive Mechanotransduction in VertebratesaaThis work was supported by grants from National Science Foundation (1453167), National Institutes of Health (1R01NS097547-01A1) and American Heart Association (14SDG17880015) to S.N.B. E.R.S. was partially supported by a training grant from National Institutes of Health T32HD007094 and a postdoctoral fellowship from the Arnold and Mabel Beckman Foundation. E.O.A. is a fellow of The Gruber Foundation and an Edward L. Tatum Fellow. Correspondence should be addressed to S.N.B (slav.bagriantsev@yale.edu). Current Topics In Membranes 2017, 79: 197-217. PMID: 28728817, PMCID: PMC5630267, DOI: 10.1016/bs.ctm.2016.11.002.Peer-Reviewed Original ResearchConceptsPiezo familyMolecular identityPhysiological capacityIon channelsNeuronal cellsVertebratesPiezo2American Heart AssociationNational InstituteMechanosensitivityHeart AssociationMuscle stretchNumber of processesMechanotransducersMechanosensationPivotal milestoneMechanotransductionFliesTraining grantsBacteria
2015
Neuronal UCP1 expression suggests a mechanism for local thermogenesis during hibernation
Laursen WJ, Mastrotto M, Pesta D, Funk OH, Goodman JB, Merriman DK, Ingolia N, Shulman GI, Bagriantsev SN, Gracheva EO. Neuronal UCP1 expression suggests a mechanism for local thermogenesis during hibernation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 1607-1612. PMID: 25605929, PMCID: PMC4321293, DOI: 10.1073/pnas.1421419112.Peer-Reviewed Original ResearchConceptsSummer active stateNervous tissue functionPalmitate-induced uncouplingDifferential transcriptomicsMolecular mechanismsHibernating mammalsBrown adipose tissueBody temperatureProtein 1Ground squirrelsBiochemical analysisTorpid squirrelsHibernation seasonTissue functionActive stateUCP1 expressionHigh expressionHibernationPharmacologic analysisThermogenic proteinsAdipose tissueBrain temperatureLow body temperatureNervous systemPhysiologic phenotype
2014
Neuronal mechanism for acute mechanosensitivity in tactile-foraging waterfowl
Schneider ER, Mastrotto M, Laursen WJ, Schulz VP, Goodman JB, Funk OH, Gallagher PG, Gracheva EO, Bagriantsev SN. Neuronal mechanism for acute mechanosensitivity in tactile-foraging waterfowl. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 14941-14946. PMID: 25246547, PMCID: PMC4205607, DOI: 10.1073/pnas.1413656111.Peer-Reviewed Original ResearchConceptsTrigeminal ganglionIon channel Piezo2Light mechanical stimuliMechanoreceptive neuronsTG neuronsPrimary afferentsMechanical stimuliTrigeminal afferentsNeuronal excitationEnd organsNeuronal mechanismsDirect mechanical stimulationCellular mechanismsMechanical stimulationAfferentsNeuronsLow thresholdNumerical expansionGangliaStimuli