Chapter Seven Piezo2 in Cutaneous and Proprioceptive Mechanotransduction in VertebratesaaThis work was supported by grants from National Science Foundation (1453167), National Institutes of Health (1R01NS097547-01A1) and American Heart Association (14SDG17880015) to S.N.B. E.R.S. was partially supported by a training grant from National Institutes of Health T32HD007094 and a postdoctoral fellowship from the Arnold and Mabel Beckman Foundation. E.O.A. is a fellow of The Gruber Foundation and an Edward L. Tatum Fellow. Correspondence should be addressed to S.N.B (slav.bagriantsev@yale.edu).
Anderson E, Schneider E, Bagriantsev S. Chapter Seven Piezo2 in Cutaneous and Proprioceptive Mechanotransduction in VertebratesaaThis work was supported by grants from National Science Foundation (1453167), National Institutes of Health (1R01NS097547-01A1) and American Heart Association (14SDG17880015) to S.N.B. E.R.S. was partially supported by a training grant from National Institutes of Health T32HD007094 and a postdoctoral fellowship from the Arnold and Mabel Beckman Foundation. E.O.A. is a fellow of The Gruber Foundation and an Edward L. Tatum Fellow. Correspondence should be addressed to S.N.B (slav.bagriantsev@yale.edu). Current Topics In Membranes 2017, 79: 197-217. PMID: 28728817, PMCID: PMC5630267, DOI: 10.1016/bs.ctm.2016.11.002.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsHumansIon ChannelsMechanotransduction, CellularMerkel CellsProprioceptionSkin Physiological PhenomenaVertebratesConceptsPiezo familyMolecular identityPhysiological capacityIon channelsNeuronal cellsVertebratesPiezo2American Heart AssociationNational InstituteMechanosensitivityHeart AssociationMuscle stretchNumber of processesMechanotransducersMechanosensationPivotal milestoneMechanotransductionFliesTraining grantsBacteria