Featured Publications
Mechanotransduction events at the physiological site of touch detection
Ziolkowski L, Gracheva E, Bagriantsev S. Mechanotransduction events at the physiological site of touch detection. ELife 2023, 12: e84179. PMID: 36607222, PMCID: PMC9833821, DOI: 10.7554/elife.84179.Peer-Reviewed Original ResearchLamellar cells in Pacinian and Meissner corpuscles are touch sensors
Nikolaev YA, Feketa VV, Anderson EO, Schneider ER, Gracheva EO, Bagriantsev SN. Lamellar cells in Pacinian and Meissner corpuscles are touch sensors. Science Advances 2020, 6: eabe6393. PMID: 33328243, PMCID: PMC7744075, DOI: 10.1126/sciadv.abe6393.Peer-Reviewed Original ResearchLamellar cellsR-type voltage-gated calcium channelsMeissner corpusclesAction potentialsChannel-dependent action potentialsPacinian corpusclesVoltage-gated calcium channelsSensory afferent neuronsNon-neuronal cellsBill skinAfferent neuronsNeuronal afferentsCalcium channelsElectrophysiological recordingsTactile stimuliCorpusclesIon channelsCellsSkinFirst evidenceTactile organsAfferentsNeuronsA Cross-Species Analysis Reveals a General Role for Piezo2 in Mechanosensory Specialization of Trigeminal Ganglia from Tactile Specialist Birds
Schneider ER, Anderson EO, Feketa VV, Mastrotto M, Nikolaev YA, Gracheva EO, Bagriantsev SN. A Cross-Species Analysis Reveals a General Role for Piezo2 in Mechanosensory Specialization of Trigeminal Ganglia from Tactile Specialist Birds. Cell Reports 2019, 26: 1979-1987.e3. PMID: 30784581, PMCID: PMC6420409, DOI: 10.1016/j.celrep.2019.01.100.Peer-Reviewed Original ResearchConceptsTrigeminal ganglionPiezo2 ion channelsExpression of moleculesExpression of factorsPiezo2 expressionSomatosensory neuronsNeuronal subtypesSomatosensory systemSuch neuronsSpecialist birdsBird speciesMolecular variationFamily AnatidaeForaging behaviorTactile specializationNeuronsMechanoreceptorsSpecies analysisGangliaGeneral roleBehavioral phenotypesIon channelsGeneral mechanismTactile specialistsFunction of mechanoreceptors
2023
Human TRPV1 structure and inhibition by the analgesic SB-366791
Neuberger A, Oda M, Nikolaev Y, Nadezhdin K, Gracheva E, Bagriantsev S, Sobolevsky A. Human TRPV1 structure and inhibition by the analgesic SB-366791. Nature Communications 2023, 14: 2451. PMID: 37117175, PMCID: PMC10147690, DOI: 10.1038/s41467-023-38162-9.Peer-Reviewed Original ResearchConceptsSB-366791Transient receptor potential (TRP) ion channelsPotential ion channelsPain pathwaysPain therapyPain treatmentPsychiatric disordersOpioid crisisTherapy targetTRPV1 inhibitorElectrophysiological recordingsHuman TRPV1TRP channelsTRPV1New drugsDisease conditionsVanilloid subfamilyIon channelsTreatmentInhibitorsOpioidsPainTherapyDiseaseCryo-electron microscopy structure
2019
A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels
Zheng W, Gracheva EO, Bagriantsev SN. A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels. ELife 2019, 8: e44003. PMID: 30628892, PMCID: PMC6349400, DOI: 10.7554/elife.44003.Peer-Reviewed Original ResearchConceptsPiezo channelsLining inner helixIon channelsMechanosensitive Piezo channelsInner pore helixImportance of inactivationMouse Piezo1Disease-causing mutationsHydrophobic gateInner helixPore helixPhysiological processesMechanism of inactivationStimulation triggersInactivationInactivation gatePiezo1Normal functionHelixHydrophobic barrierFast inactivationPhysical constrictionSecondary gateRate of inactivationMajor determinant
2018
TMEM150C/Tentonin3 Is a Regulator of Mechano-gated Ion Channels
Anderson EO, Schneider ER, Matson JD, Gracheva EO, Bagriantsev SN. TMEM150C/Tentonin3 Is a Regulator of Mechano-gated Ion Channels. Cell Reports 2018, 23: 701-708. PMID: 29669276, PMCID: PMC5929159, DOI: 10.1016/j.celrep.2018.03.094.Peer-Reviewed Original Research
2017
Molecular basis of tactile specialization in the duck bill
Schneider ER, Anderson EO, Mastrotto M, Matson JD, Schulz VP, Gallagher PG, LaMotte RH, Gracheva EO, Bagriantsev SN. Molecular basis of tactile specialization in the duck bill. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: 13036-13041. PMID: 29109250, PMCID: PMC5724259, DOI: 10.1073/pnas.1708793114.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAvian ProteinsBeakChickensCloning, MolecularDucksEmbryo, NonmammalianGene ExpressionGenetic VectorsHEK293 CellsHumansIon ChannelsKineticsMechanoreceptorsMechanotransduction, CellularMicePatch-Clamp TechniquesRecombinant ProteinsRNA, Small InterferingSequence Homology, Amino AcidSpecies SpecificityTouchTouch PerceptionTrigeminal GanglionConceptsMolecular basisHeterologous expression systemSpecialist birdsMouse orthologPiezo2 ion channelsTactile specializationExpression systemDuck billMolecular characterizationIon channelsFeeding behaviorEdible matterPiezo2BirdsElectrophysiological characterizationSlow inactivation kineticsOrthologsVertebratesMechanoMechanotransductionKnockdownInactivation kineticsMurky watersHigh densityNeuronsChapter Seven Piezo2 in Cutaneous and Proprioceptive Mechanotransduction in VertebratesaaThis work was supported by grants from National Science Foundation (1453167), National Institutes of Health (1R01NS097547-01A1) and American Heart Association (14SDG17880015) to S.N.B. E.R.S. was partially supported by a training grant from National Institutes of Health T32HD007094 and a postdoctoral fellowship from the Arnold and Mabel Beckman Foundation. E.O.A. is a fellow of The Gruber Foundation and an Edward L. Tatum Fellow. Correspondence should be addressed to S.N.B (slav.bagriantsev@yale.edu).
Anderson E, Schneider E, Bagriantsev S. Chapter Seven Piezo2 in Cutaneous and Proprioceptive Mechanotransduction in VertebratesaaThis work was supported by grants from National Science Foundation (1453167), National Institutes of Health (1R01NS097547-01A1) and American Heart Association (14SDG17880015) to S.N.B. E.R.S. was partially supported by a training grant from National Institutes of Health T32HD007094 and a postdoctoral fellowship from the Arnold and Mabel Beckman Foundation. E.O.A. is a fellow of The Gruber Foundation and an Edward L. Tatum Fellow. Correspondence should be addressed to S.N.B (slav.bagriantsev@yale.edu). Current Topics In Membranes 2017, 79: 197-217. PMID: 28728817, PMCID: PMC5630267, DOI: 10.1016/bs.ctm.2016.11.002.Peer-Reviewed Original ResearchConceptsPiezo familyMolecular identityPhysiological capacityIon channelsNeuronal cellsVertebratesPiezo2American Heart AssociationNational InstituteMechanosensitivityHeart AssociationMuscle stretchNumber of processesMechanotransducersMechanosensationPivotal milestoneMechanotransductionFliesTraining grantsBacteria
2016
Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels
Laursen WJ, Schneider ER, Merriman DK, Bagriantsev SN, Gracheva EO. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 11342-11347. PMID: 27638213, PMCID: PMC5056056, DOI: 10.1073/pnas.1604269113.Peer-Reviewed Original ResearchMeSH KeywordsAfferent PathwaysAmino Acid SequenceAmino Acid SubstitutionAnimalsAnkyrin RepeatCamelusCapsaicinConserved SequenceGanglia, SpinalHEK293 CellsHot TemperatureHumansHydrogen-Ion ConcentrationIon Channel GatingMutationNeuronsSciuridaeSequence AlignmentThermotoleranceTRPV Cation ChannelsXenopusConceptsHeat toleranceCommon molecular strategyN-terminal ankyrinSingle amino acid changeSingle amino acid substitutionGround squirrelsPolymodal ion channelAmino acid changesAmino acid substitutionsRemarkable functional flexibilityFunctional conservationEcological nichesChemical cuesMammalian speciesMolecular strategiesAcid changesAcid substitutionsHeat sensitivityTransient receptor potential vanilloid 1Ion channelsOrthologsFunctional plasticitySquirrelsBactrian camelsSuch adaptation