Distinct mechanisms drive divergent phenotypes in hypertrophic and dilated cardiomyopathy associated TPM1 variants
Halder S, Rynkiewicz M, Kim L, Barry M, Zied A, Sewanan L, Kirk J, Moore J, Lehman W, Campbell S. Distinct mechanisms drive divergent phenotypes in hypertrophic and dilated cardiomyopathy associated TPM1 variants. Journal Of Clinical Investigation 2024 PMID: 39436707, DOI: 10.1172/jci179135.Peer-Reviewed Original ResearchTPM1 mutationActin thin filamentsDilated cardiomyopathyE54KPhenotypic diversityMyosin activityStem cell-derived cardiomyocytesGene expressionHuman engineered heart tissueIncreased calcium sensitivitySarcomeric proteinsCell-derived cardiomyocytesThin filamentsK mutationMolecular eventsTPM1MutationsClinical phenotypePhenotypeAllosteric interactionsGenesMuscle contractilityCalcium sensitivityInherited disorderAssociation rateIn silico and in vitro models reveal the molecular mechanisms of hypocontractility caused by TPM1 M8R
Creso J, Gokhan I, Rynkiewicz M, Lehman W, Moore J, Campbell S. In silico and in vitro models reveal the molecular mechanisms of hypocontractility caused by TPM1 M8R. Frontiers In Physiology 2024, 15: 1452509. PMID: 39282088, PMCID: PMC11392859, DOI: 10.3389/fphys.2024.1452509.Peer-Reviewed Original ResearchDilated cardiomyopathyManifestation of dilated cardiomyopathyTropomyosin-actin interactionsIntact cardiac muscleIsometric twitch forceCardiac muscle disordersSevere heart failureHuman engineered heart tissueGenotype-phenotype relationshipsDose-dependent mannerDuration of contractionIn silico predictionIn vitro modelDepressed contractilityMutant tissueCardiac sarcomereLinkage studiesHeart failureTropomyosin chainTwitch contractionsCardiac thin filamentsInherited disorderMuscle disordersMutation pathogenicityCardiac muscle