2022
The fates of internalized NaV1.7 channels in sensory neurons: Retrograde cotransport with other ion channels, axon-specific recycling, and degradation
Higerd-Rusli G, Tyagi S, Liu S, Dib-Hajj F, Waxman S, Dib-Hajj S. The fates of internalized NaV1.7 channels in sensory neurons: Retrograde cotransport with other ion channels, axon-specific recycling, and degradation. Journal Of Biological Chemistry 2022, 299: 102816. PMID: 36539035, PMCID: PMC9843449, DOI: 10.1016/j.jbc.2022.102816.Peer-Reviewed Original ResearchConceptsMembrane proteinsIon channelsNeuronal functionDistinct neuronal compartmentsAxonal membrane proteinsRetrograde traffickingNeuronal polarityRecycling pathwayLate endosomesPlasma membraneSpecific proteinsAxonal traffickingNovel mechanismCell membraneSodium channel NaNeuronal compartmentsMultiple pathwaysLive neuronsVoltage-gated sodium channel NaProteinEndocytosisMembrane specializationsTraffickingMembraneChannel NaPeripheral Ion Channel Genes Screening in Painful Small Fiber Neuropathy
Ślęczkowska M, Almomani R, Marchi M, Salvi E, de Greef B, Sopacua M, Hoeijmakers J, Lindsey P, Waxman S, Lauria G, Faber C, Smeets H, Gerrits M. Peripheral Ion Channel Genes Screening in Painful Small Fiber Neuropathy. International Journal Of Molecular Sciences 2022, 23: 14095. PMID: 36430572, PMCID: PMC9696564, DOI: 10.3390/ijms232214095.Peer-Reviewed Original ResearchMeSH KeywordsAnoctaminsCohort StudiesDiabetic NeuropathiesHumansIon ChannelsNeuralgiaPotassium ChannelsSmall Fiber NeuropathyConceptsSmall fiber neuropathyNeuropathic painIon channel genesPainful small fiber neuropathyPain score VASPathogenic heterozygous variantGenetic variantsIon channelsCohort studyDiabetic neuropathySevere painDifferent etiologiesPainPatientsVoltage-gated sodium ion channelsHeterozygous variantsNeuropathySodium ion channelsGene screeningGeneration sequencingPrevious findingsSuch variantsEtiologySCN1BVariants
2001
Transcriptional channelopathies: An emerging class of disorders
Waxman S. Transcriptional channelopathies: An emerging class of disorders. Nature Reviews Neuroscience 2001, 2: 652-659. PMID: 11533733, DOI: 10.1038/35090026.Peer-Reviewed Original ResearchConceptsNerve injuryMultiple sclerosisSodium channel geneTranscriptional channelopathiesChannel transcriptionPeripheral nerve injurySpinal sensory neuronsChannel genesExperimental nerve injuryFamily of disordersAction potential conductionAutoimmune channelopathiesDemyelinated nervesNeuropathic painDemyelinating conditionMotor abnormalitiesNeurotrophic factorClass of disordersSensory neuronsCalcium channelsChannel expressionCerebellar ataxiaPurkinje cellsPotential conductionChannelopathies
1994
Activity‐dependent modulation of excitability: Implications for axonal physiology and pathophysiology
Stys P, Waxman S. Activity‐dependent modulation of excitability: Implications for axonal physiology and pathophysiology. Muscle & Nerve 1994, 17: 969-974. PMID: 7520532, DOI: 10.1002/mus.880170902.Peer-Reviewed Original Research
1993
Molecular dissection of the myelinated axon
Waxman S, Ritchie J. Molecular dissection of the myelinated axon. Annals Of Neurology 1993, 33: 121-136. PMID: 7679565, DOI: 10.1002/ana.410330202.Peer-Reviewed Original ResearchConceptsMyelinated axonsInternodal axon membraneDemyelinated axonsCentral nervous system white matterNervous system white matterRestoration of conductionImportant therapeutic approachSchwann cell processesWhite matter axonsInflux of Ca2Important pathophysiological implicationsGlial cell processesAction potential conductionAxonal excitabilityGlial cellsAnoxic injuryMyelinated fibersTherapeutic approachesAstrocyte processesCell processesPathophysiological implicationsRepetitive firingWhite matterNeurological disordersAction potentials
1988
Evidence for the presence of two types of potassium channels in the rat optic nerve
Gordon T, Kocsis J, Waxman S. Evidence for the presence of two types of potassium channels in the rat optic nerve. Brain Research 1988, 447: 1-9. PMID: 2454699, DOI: 10.1016/0006-8993(88)90959-6.Peer-Reviewed Original ResearchConceptsRat optic nervePostspike positivityOptic nerveAction potential waveformPotassium channelsAction potential broadeningSingle-fiber recordingsRepetitive firing patternsAction potential repolarizationTEA-sensitive channelsDistinct potassium channelsPotential waveformPronounced afterhyperpolarizationFiber recordingsWhole nerveIntracellular hyperpolarizationGap recordingsRepetitive firingMyelinated axonsNerveAction potentialsPotential repolarizationAfterhyperpolarizationFiring patternsProlonged depolarization
1987
Chapter 8 Ionic channel organization of normal and regenerating mammalian axons
Kocsis J, Waxman S. Chapter 8 Ionic channel organization of normal and regenerating mammalian axons. Progress In Brain Research 1987, 71: 89-101. PMID: 2438722, DOI: 10.1016/s0079-6123(08)61816-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsIon ChannelsMotor NeuronsNerve RegenerationNeurons, AfferentPeripheral NervesPotassiumSodiumConceptsNerve fibersPeripheral nervesRegenerated nerve fibersCell remodellingNormal developmentMammalian nerve fibresSchwann cellsElectrophysiological characteristicsFine caliberMyelinated axonsImmature axonsAxonal growthMammalian axonsNerveNormal maturationRemodelling occursAxonsCell arrestRemodellingTime courseMyelinIonic channelsLong termMaturationTime of maturationMolecular neurobiology of the myelinated nerve fiber: ion-channel distributions and their implications for demyelinating diseases.
Waxman S. Molecular neurobiology of the myelinated nerve fiber: ion-channel distributions and their implications for demyelinating diseases. Proceedings Of The Association For Research In Nervous And Mental Disease 1987, 65: 7-37. PMID: 2455313.Peer-Reviewed Original Research
1986
Mammalian optic nerve fibers display two pharmacologically distinct potassium channels
Kocsis J, Gordon T, Waxman S. Mammalian optic nerve fibers display two pharmacologically distinct potassium channels. Brain Research 1986, 383: 357-361. PMID: 2429732, DOI: 10.1016/0006-8993(86)90040-5.Peer-Reviewed Original ResearchConceptsOptic nerve fibersNerve fibersDistinct potassium channelsPotassium channelsRat optic nerve fibersNerve action potentialsAction potential characteristicsAction potential repolarizationTEA-sensitive channelsIntracellular hyperpolarizationAction potentialsPotential repolarizationSuction electrodeTetraethylammoniumPotential characteristicsRepolarizationPositivityDifferences in intramembranous particle distribution in the paranodal axolemma are not associated with functional differences of dorsal and ventral roots
Fields R, Black J, Bowe C, Kocsis J, Waxman S. Differences in intramembranous particle distribution in the paranodal axolemma are not associated with functional differences of dorsal and ventral roots. Neuroscience Letters 1986, 67: 13-18. PMID: 2425295, DOI: 10.1016/0304-3940(86)90200-4.Peer-Reviewed Original Research
1985
Myelin sheath remodelling in regenerated rat sciatic nerve
Hildebrand C, Kocsis J, Berglund S, Waxman S. Myelin sheath remodelling in regenerated rat sciatic nerve. Brain Research 1985, 358: 163-170. PMID: 2416385, DOI: 10.1016/0006-8993(85)90960-6.Peer-Reviewed Original ResearchConceptsRat sciatic nerveSciatic nerveRegenerated nervesAdult rat sciatic nerveRegenerated rat sciatic nerveNormal control nervesLight microscopic examinationAction potential waveformCrush lesionMonths survivalNerve segmentsControl nervesSame nerveIndividual nervesNerve fibersNerveShort sheathMyelin layersMyelin sheathPotassium channelsMicroscopic examinationOrganization of Ion Channels in the Myelinated Nerve Fiber
Waxman S, Ritchie J. Organization of Ion Channels in the Myelinated Nerve Fiber. Science 1985, 228: 1502-1507. PMID: 2409596, DOI: 10.1126/science.2409596.Peer-Reviewed Original ResearchDifferences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation
Bowe C, Kocsis J, Waxman S. Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation. Proceedings Of The Royal Society B 1985, 224: 355-366. PMID: 2410932, DOI: 10.1098/rspb.1985.0037.Peer-Reviewed Original ResearchConceptsDorsal spinal rootsSensory fibersMammalian motorPotassium channelsSpinal rootsAction potentialsRoot fibersCompound action potentialSingle sensory fibresDorsal root fibersVentral root fibersClasses of axonsIndividual action potentialsPharmacological blockadeVentral rootsYoung rootsSensory axonsWhole nervePotassium conductanceAxon responsesCourse of maturationBlockadeAxonsRoots resultsDifferential sensitivityLigature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance
Waxman S, Kocsis J, Eng D. Ligature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance. Muscle & Nerve 1985, 8: 85-92. PMID: 2414652, DOI: 10.1002/mus.880080202.Peer-Reviewed Original ResearchConceptsAction potentialsRepetitive firingSingle stimulusPotassium channelsCompound action potentialRat sciatic nerveAction potential propertiesWhole-nerve responseAction potential characteristicsIntra-axonal recordingsAction potential waveformNerve segmentsSciatic nerveNerve responsesPeripheral nervesInjury siteMyelinated fibersLater spikesElectrophysiological observationsNerveRefractory periodFiring patternsPotassium conductancePotential waveformInitial spike
1983
Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents
Kocsis J, Waxman S. Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents. Nature 1983, 304: 640-642. PMID: 6308475, DOI: 10.1038/304640a0.Peer-Reviewed Original ResearchConceptsNerve fibersPotassium channelsMyelinated peripheral nerve fibresAxon segmentsPeripheral nerve fibersAxon sproutsEndoneurial tubesNerve crushFunctional recoveryFunctional organizationMyelinated fibersAxon cylindersSchwann cellsBurst activityMyelinated axonsMammalian axonsAxonsPeripheral connectionsMembrane depolarizationBasement membraneK channelsRegenerated fibersAxon maturationMaturation of mammalian myelinated fibers: changes in action-potential characteristics following 4-aminopyridine application
Kocsis J, Ruiz J, Waxman S. Maturation of mammalian myelinated fibers: changes in action-potential characteristics following 4-aminopyridine application. Journal Of Neurophysiology 1983, 50: 449-463. PMID: 6310062, DOI: 10.1152/jn.1983.50.2.449.Peer-Reviewed Original Research
1982
Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance
Kocsis J, Waxman S, Hildebrand C, Ruiz J. Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance. Proceedings Of The Royal Society B 1982, 217: 77-87. PMID: 6131423, DOI: 10.1098/rspb.1982.0095.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAminopyridinesAnimalsAxonsIon ChannelsMaleNerve RegenerationNeural ConductionPotassiumRatsConceptsRegenerating axonsNerve fibersFiring propertiesAction potentialsPotassium conductancePotassium channelsCompound action potentialSciatic nerve fibersEarly regenerating axonsAction potential waveformRat nerve fibresMammalian nerve fibresDemyelinated axonsMyelinated fibersExtracellular applicationAxonsRecording techniquesSingle stimulusFiring characteristicsPotential waveformPresent study
1981
Basic and clinical electrophysiology of demyelinating diseases.
Ritchie J, Waxman S, Waksman B. Basic and clinical electrophysiology of demyelinating diseases. Neurology 1981, 31: 1308-10. PMID: 6287348, DOI: 10.1212/wnl.31.10.1308.Peer-Reviewed Original ResearchAction potential electrogenesis in mammalian central axons.
Kocsis J, Waxman S. Action potential electrogenesis in mammalian central axons. Advances In Neurology 1981, 31: 299-312. PMID: 6275668.Peer-Reviewed Original ResearchElectrophysiology of demyelinating diseases: future directions and questions.
Waxman S, Ritchie J. Electrophysiology of demyelinating diseases: future directions and questions. Advances In Neurology 1981, 31: 511-13. PMID: 6275675.Peer-Reviewed Original Research