1992
Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter
Stys P, Waxman S, Ransom B. Effects of Temperature on Evoked Electrical Activity and Anoxic Injury in CNS White Matter. Cerebrovascular And Brain Metabolism Reviews 1992, 12: 977-986. PMID: 1400652, DOI: 10.1038/jcbfm.1992.135.Peer-Reviewed Original ResearchConceptsFunctional recoveryWhite matterAnoxic injuryMin of anoxiaOptic nerveFunctional outcomeTypical CNS white matter tractAnoxic exposureIntracellular Ca2Anoxic/ischemic injuryCNS white matter tractCompound action potential areaGray matterIsolated rat optic nerveGreater functional recoveryEvoked electrical activityAction potential areaCNS white matterRat optic nerveWhite matter tractsFunctional injuryIschemic injuryPathological increaseAnoxic damageCAP peak
1991
Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis
Stys P, Ransom B, Waxman S. Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis. Brain Research 1991, 546: 18-32. PMID: 1855148, DOI: 10.1016/0006-8993(91)91154-s.Peer-Reviewed Original Research
1990
Depolarization-dependent actions of dihydropyridines on synaptic transmission in the in vitro rat hippocampus
O'Regan M, Kocsis J, Waxman S. Depolarization-dependent actions of dihydropyridines on synaptic transmission in the in vitro rat hippocampus. Brain Research 1990, 527: 181-191. PMID: 1701335, DOI: 10.1016/0006-8993(90)91136-5.Peer-Reviewed Original ResearchMeSH Keywords3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl esterAnimalsCaffeineDihydropyridinesEvoked PotentialsFemaleHippocampusIn Vitro TechniquesLightMembrane PotentialsNeuronsNifedipineNimodipinePerfusionPotassiumPyramidal TractsRatsRats, Inbred StrainsSynapsesSynaptic TransmissionConceptsBay K 8644Synaptic transmissionDepressant actionIntracellular recordingsModerate membrane depolarizationMembrane depolarizationHippocampal brain slicesNormal Krebs solutionField potential responsesDepolarization-dependent increaseField potential analysisCA1 neuronsPresynaptic locusHippocampal slicesKrebs solutionPostsynaptic componentsPostsynaptic responsesPyramidal cellsNeuronal excitabilityRat hippocampusBrain slicesDirect depolarizationSpike thresholdDHP effectField potentials
1981
Modulation of Parallel Fiber Excitability by Postsynaptically Mediated Changes in Extracellular Potassium
Malenka R, Kocsis J, Ransom B, Waxman S. Modulation of Parallel Fiber Excitability by Postsynaptically Mediated Changes in Extracellular Potassium. Science 1981, 214: 339-341. PMID: 7280695, DOI: 10.1126/science.7280695.Peer-Reviewed Original ResearchConceptsSynaptic field potentialsField potentialsParallel fiber stimulationExtracellular potassium concentrationRat cerebellar cortexParallel fibersAfferent fibersPostsynaptic elementsFiber excitabilityCerebellar cortexExtracellular potassiumFiber stimulationExcitabilityMarked increasePotassium concentrationStimulationMolecular layerImpulse entrainment: Computer simulations and studies on the parallel fibers of the cerebellum
Kocsis J, Cummins K, Waxman S, Malenka R. Impulse entrainment: Computer simulations and studies on the parallel fibers of the cerebellum. Experimental Neurology 1981, 72: 628-637. PMID: 7238712, DOI: 10.1016/0014-4886(81)90011-x.Peer-Reviewed Original ResearchEnhanced parallel fiber frequency-following after reduction of postsynaptic activity
Kocsis J, Malenka R, Waxman S. Enhanced parallel fiber frequency-following after reduction of postsynaptic activity. Brain Research 1981, 207: 321-331. PMID: 6258738, DOI: 10.1016/0006-8993(81)90367-x.Peer-Reviewed Original ResearchConceptsCalcium antagonistsSynaptic activityPostsynaptic activityParallel fibersRat cerebellar cortexParallel fiber volleyFiber volleyNeuronal elementsPresynaptic elementsSynaptic potentialsCerebellar cortexLocal superfusionStimulation trainsSlow potentialsEnhancing effectAntagonistExtracellular pathwaysSuperfusionVolleysActivityCortexCerebellum
1980
Effects of 4-aminopyridine on the frequency following properties of the parallel fibers of the cerebellar cortex
Kocsis J, Malenka R, Waxman S. Effects of 4-aminopyridine on the frequency following properties of the parallel fibers of the cerebellar cortex. Brain Research 1980, 195: 511-516. PMID: 6249447, DOI: 10.1016/0006-8993(80)90090-6.Peer-Reviewed Original ResearchMyoelectric silence following unopposed passive stretch in normal man.
Angel R, Waxman S, Kocsis J. Myoelectric silence following unopposed passive stretch in normal man. Journal Of Neurology Neurosurgery & Psychiatry 1980, 43: 705. PMID: 7431031, PMCID: PMC490642, DOI: 10.1136/jnnp.43.8.705.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultElectromyographyEvoked PotentialsFemaleHumansMaleMechanoreceptorsMiddle AgedMuscle ContractionMusclesReflex, StretchConceptsNormal menMyoelectric silencePassive stretchAfferent reflex pathwaysPassive muscle stretchSpindle afferent dischargeAutogenetic inhibitionLengthening reactionReflex pathwaysSustained contractionAfferent dischargeMyotatic reflexEMG activityMuscle stretchLower limbsSilent periodFusimotor activityRenshaw inhibitionInitial responseBrief cessationMuscleMenPossible mechanismInhibitionResponse
1978
Characteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkey
Swadlow H, Rosene D, Waxman S. Characteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkey. Experimental Brain Research 1978, 33: 455-467. PMID: 103739, DOI: 10.1007/bf00235567.Peer-Reviewed Original ResearchConceptsCallosal efferent neuronsPrior impulseAxonal conduction velocityConduction velocityPrelunate gyrusEfferent neuronsCorpus callosumSupernormal periodRhesus monkeysCell of originRelative refractory periodSubnormal periodAntidromic activationAntidromic latenciesElectrical stimulationImpulse conductionRefractory periodElectrophysiological techniquesGyrusCallosumMonkeysExcitabilityNeuronsPeriodSpleniumLatency variability and the identification of antidromically activated neurons in mammalian brain
Swadlow H, Waxman S, Rosene D. Latency variability and the identification of antidromically activated neurons in mammalian brain. Experimental Brain Research 1978, 32: 439-443. PMID: 98342, DOI: 10.1007/bf00238715.Peer-Reviewed Original Research
1977
Conduction in Myelinated, Unmyelinated, and Demyelinated Fibers
Waxman S. Conduction in Myelinated, Unmyelinated, and Demyelinated Fibers. JAMA Neurology 1977, 34: 585-589. PMID: 907529, DOI: 10.1001/archneur.1977.00500220019003.Peer-Reviewed Original ResearchThe conduction properties of axons in central white matter
Waxman S, Swadlow H. The conduction properties of axons in central white matter. Progress In Neurobiology 1977, 8: 297-324. PMID: 335441, DOI: 10.1016/0301-0082(77)90009-0.Peer-Reviewed Original Research
1976
Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit
Swadlow H, Waxman S. Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit. Experimental Neurology 1976, 53: 128-150. PMID: 964334, DOI: 10.1016/0014-4886(76)90288-0.Peer-Reviewed Original ResearchConceptsCallosal axonsAntidromic latenciesConduction velocityContralateral cortical stimulationMain axon trunkLatency decreaseCorticotectal axonsAntidromic activationAxon trunkCortical stimulationTest stimuliAwake rabbitsConditioning stimulusCell bodiesAxonsControl valuesThreshold shiftDifferent axonsConditioning pulseAppropriate intervalsPresent studyRabbitsDurationStimuliLatency
1969
Oculomotor Neurons in Fish: Electrotonic Coupling and Multiple Sites of Impulse Initiation
Kriebel M, Bennett M, Waxman S, Pappas G. Oculomotor Neurons in Fish: Electrotonic Coupling and Multiple Sites of Impulse Initiation. Science 1969, 166: 520-524. PMID: 4309628, DOI: 10.1126/science.166.3904.520.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEvoked PotentialsFishesMicroscopy, ElectronMuscle ContractionNeuronsOculomotor NerveSynaptic Transmission