2024
Disordered but effective: short linear motifs as gene therapy targets for hyperexcitability disorders
Dib-Hajj S, Waxman S. Disordered but effective: short linear motifs as gene therapy targets for hyperexcitability disorders. Journal Of Clinical Investigation 2024, 134: e182198. PMID: 38949022, PMCID: PMC11213459, DOI: 10.1172/jci182198.Peer-Reviewed Original ResearchConceptsTetrodotoxin-sensitiveHyperexcitability disordersSensory neuronsExcitability of sensory neuronsGene therapy modalitiesPeripheral sensory neuronsVoltage-gated sodiumMinimal side effectsGene therapyInduce analgesiaTherapy modalitiesSide effectsTherapeutic strategiesNav channelsAttenuating excitationIn vivoHyperexcitabilityAnalgesiaNeuronsDisordersPainTherapyGenesBiodistributionRatsSmall fiber neuropathy
Kool D, Hoeijmakers J, Waxman S, Faber C. Small fiber neuropathy. International Review Of Neurobiology 2024 DOI: 10.1016/bs.irn.2024.10.001.Peer-Reviewed Original ResearchSmall fiber neuropathySodium channelopathiesAssociated with small fiber neuropathyTherapeutic strategiesNerve fibersNeuropathic pain disordersQuantitative sensory testingUnmyelinated C-fibersNervous systemSmall nerve fibersDiagnostic methodsPeripheral nervous systemAutonomic nervous systemNeuropathic painFiber neuropathyPain disordersClinical presentationC-fibersImmune-mediatedAutonomic dysfunctionClinical featuresSkin biopsiesDiagnosed patientsClinical trialsHereditary condition
2005
Characterizing the Mechanisms of Progression in Multiple Sclerosis: Evidence and New Hypotheses for Future Directions
Frohman E, Filippi M, Stuve O, Waxman S, Corboy J, Phillips J, Lucchinetti C, Wilken J, Karandikar N, Hemmer B, Monson N, De Keyser J, Hartung H, Steinman L, Oksenberg J, Cree B, Hauser S, Racke M. Characterizing the Mechanisms of Progression in Multiple Sclerosis: Evidence and New Hypotheses for Future Directions. JAMA Neurology 2005, 62: 1345-1356. PMID: 16157741, DOI: 10.1001/archneur.62.9.1345.Peer-Reviewed Original ResearchConceptsMultiple sclerosisProgression of MSCause of progressionMechanisms of progressionMS exacerbationDisease courseInflammatory cascadeClinical manifestationsTherapeutic strategiesDisease processTreatment interventionsEvidence-based observationsEmergence of disabilityProgressionDiseasePotential mechanismsTreatment effectsSclerosisProgressive stagesNovel research initiativesExacerbationTherapyIllnessMajor advancementsExpert perspectives7 Altered Distributions and Functions of Multiple Sodium Channel Subtypes in Multiple Sclerosis and its Models
Waxman S. 7 Altered Distributions and Functions of Multiple Sodium Channel Subtypes in Multiple Sclerosis and its Models. 2005, 101-118. DOI: 10.1016/b978-012738761-1/50008-0.Peer-Reviewed Original ResearchMultiple sclerosisSodium channel subtypesVoltage-gated sodium channelsSodium channelsChannel subtypesDistinct voltage-gated sodium channelsPathophysiology of MSAxonal degenerationTherapeutic strategiesSclerosisFiring patternsExperimental modelMaladaptive roleNeuronal signalingSubtypesMolecular analysisAltered distributionNeuronsRecent studiesMajor contributorPathophysiologyAxonsDegenerationDiseaseImportant roleChapter 19 Transcriptional Channelopathies of the Nervous System New Targets for Molecular Medicine
Waxman S. Chapter 19 Transcriptional Channelopathies of the Nervous System New Targets for Molecular Medicine. 2005, 319-338. DOI: 10.1016/b978-012738903-5/50020-5.Peer-Reviewed Original ResearchTranscriptional channelopathiesIon channel genesChannel genesUnique amino acid sequenceAmino acid sequenceVoltage-gated sodium channelsGene productsAcid sequenceNew therapeutic opportunitiesProtein structureGenesTranscriptionNeuronal functionMolecular targetsMolecular medicineChannel transcriptionNew targetsNew therapeutic strategiesTherapeutic opportunitiesSodium channelsSpecific targetingComplete understandingChannelopathiesTherapeutic strategiesNervous system