2024
Nav1.8 in small dorsal root ganglion neurons contributes to vincristine-induced mechanical allodynia
Nascimento de Lima A, Zhang H, Chen L, Effraim P, Gomis-Perez C, Cheng X, Huang J, Waxman S, Dib-Hajj S. Nav1.8 in small dorsal root ganglion neurons contributes to vincristine-induced mechanical allodynia. Brain 2024, 147: 3157-3170. PMID: 38447953, DOI: 10.1093/brain/awae071.Peer-Reviewed Original ResearchDorsal root ganglion neuronsDorsal root ganglionVincristine-induced mechanical allodyniaVincristine-induced peripheral neuropathyMechanical allodyniaVincristine treatmentNav1.8 channelsSmall dorsal root ganglion neuronsDevelopment of mechanical allodyniaTTX-R current densityVoltage-gated sodium channel Nav1.6Vincristine-treated animalsCurrent-clamp recordingsSodium channel Nav1.8Voltage-clamp recordingsReducing current thresholdSodium channel Nav1.6Investigate pathophysiological mechanismsTTX-RHyperpolarizing shiftRoot ganglionAllodyniaGanglion neuronsVincristine administrationPeripheral neuropathyFunctionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol
Ghovanloo M, Effraim P, Tyagi S, Zhao P, Dib-Hajj S, Waxman S. Functionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol. Communications Biology 2024, 7: 120. PMID: 38263462, PMCID: PMC10805714, DOI: 10.1038/s42003-024-05781-x.Peer-Reviewed Original ResearchConceptsDorsal root ganglionDorsal root ganglion neuronal excitabilityDorsal root ganglion neuronsNeuronal excitabilityCurrent-clamp analysisSteady-state inactivationVoltage-dependent sodiumSlow inactivated stateAutomated patch clamp platformMultielectrode array recordingsNav currentsNeuropathic painSodium currentRoot ganglionGanglion neuronsSlow inactivationInactivated stateCurrent inhibitorsIon channelsNeuronsInhibitory effectCannabinolArray recordingsEndocannabinoidCannabinoidNav1.7 as a chondrocyte regulator and therapeutic target for osteoarthritis
Fu W, Vasylyev D, Bi Y, Zhang M, Sun G, Khleborodova A, Huang G, Zhao L, Zhou R, Li Y, Liu S, Cai X, He W, Cui M, Zhao X, Hettinghouse A, Good J, Kim E, Strauss E, Leucht P, Schwarzkopf R, Guo E, Samuels J, Hu W, Attur M, Waxman S, Liu C. Nav1.7 as a chondrocyte regulator and therapeutic target for osteoarthritis. Nature 2024, 625: 557-565. PMID: 38172636, PMCID: PMC10794151, DOI: 10.1038/s41586-023-06888-7.Peer-Reviewed Original ResearchVoltage-gated sodium channelsOA progressionDorsal root ganglion neuronsStructural joint damagePain relief treatmentHuman OA chondrocytesCommon joint diseaseMultiple mouse modelsNav1.7 blockersPain behaviorGanglion neuronsPharmacological blockadeJoint damageJoint degenerationChannel blockersJoint diseaseOA chondrocytesMouse modelTherapeutic targetOsteoarthritisIntracellular Ca2Nav1.7Nav1.7 channelsGenetic ablationLimited evidence
2023
Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes
Ghovanloo M, Tyagi S, Zhao P, Effraim P, Dib-Hajj S, Waxman S. Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes. Channels 2023, 18: 2289256. PMID: 38055732, PMCID: PMC10761158, DOI: 10.1080/19336950.2023.2289256.Peer-Reviewed Original ResearchConceptsSexual dimorphismRodent dorsal root ganglion neuronsBiophysical propertiesDorsal root ganglion neuronsExpression patternsSex-dependent regulationVoltage-gated sodiumFunctional analysisGanglion neuronsRodent sensory neuronsMouse dorsal root ganglion neuronsNaïve WT miceNumber of cellsMixed populationDimorphismUniform experimental conditionsSex-dependent differencesSensory neuronsNative DRG neuronsPain pathwaysDRG neuronsWT miceClinical studiesNav currentsAdult malesIh current stabilizes excitability in rodent DRG neurons and reverses hyperexcitability in a nociceptive neuron model of inherited neuropathic pain
Vasylyev D, Liu S, Waxman S. Ih current stabilizes excitability in rodent DRG neurons and reverses hyperexcitability in a nociceptive neuron model of inherited neuropathic pain. The Journal Of Physiology 2023, 601: 5341-5366. PMID: 37846879, PMCID: PMC10843455, DOI: 10.1113/jp284999.Peer-Reviewed Original ResearchConceptsFunction Nav1.7 mutationsDorsal root ganglion neuronsSmall DRG neuronsDRG neuronsNav1.7 mutationNeuropathic painGanglion neuronsHuman genetic modelsAction potentialsDRG neuron excitabilityDRG neuron hyperexcitabilityRodent DRG neuronsAP generationCardiac cellsPotential molecular targetsNeuron hyperexcitabilitySevere painPain therapeuticsCNS neuronsExcessive firingNeuron excitabilityCentral neuronsSubthreshold oscillationsHyperexcitabilityNeuronal firingNav1.7 P610T mutation in two siblings with persistent ocular pain after corneal axon transection: impaired slow inactivation and hyperexcitable trigeminal neurons
Ghovanloo M, Effraim P, Yuan J, Schulman B, Jacobs D, Dib-Hajj S, Waxman S. Nav1.7 P610T mutation in two siblings with persistent ocular pain after corneal axon transection: impaired slow inactivation and hyperexcitable trigeminal neurons. Journal Of Neurophysiology 2023, 129: 609-618. PMID: 36722722, PMCID: PMC9988530, DOI: 10.1152/jn.00457.2022.Peer-Reviewed Original ResearchConceptsPersistent ocular painTrigeminal ganglion neuronsOcular painCorneal refractive surgeryGanglion neuronsRefractive surgeryAxonal injurySlow inactivationHuman pain modelTrigeminal afferent nervesTrigeminal ganglion axonsSmall subgroupPain-related disordersEffects of injurySodium channel Nav1.7Channel slow inactivationEye painPostoperative painMost patientsPain modelAfferent nervesPersistent painTrigeminal neuronsNav1.7 mutationAxon transectionA TRPM7 mutation linked to familial trigeminal neuralgia: Omega current and hyperexcitability of trigeminal ganglion neurons
Gualdani R, Gailly P, Yuan J, Yerna X, Di Stefano G, Truini A, Cruccu G, Dib-Hajj S, Waxman S. A TRPM7 mutation linked to familial trigeminal neuralgia: Omega current and hyperexcitability of trigeminal ganglion neurons. Biophysical Journal 2023, 122: 321a. DOI: 10.1016/j.bpj.2022.11.1799.Peer-Reviewed Original ResearchHigh-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neurons
Ghovanloo M, Tyagi S, Zhao P, Kiziltug E, Estacion M, Dib-Hajj S, Waxman S. High-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neurons. Cell Reports Methods 2023, 3: 100385. PMID: 36814833, PMCID: PMC9939380, DOI: 10.1016/j.crmeth.2022.100385.Peer-Reviewed Original ResearchConceptsDorsal root ganglion neuronsCurrent-clamp recordingsCurrent-clamp analysisVoltage-gated sodium channelsPatch-clamp techniqueExcitable cellsGanglion neuronsElectrophysiological recordingsNeuronal cellsNeuronsGold standard methodologySodium channelsCellular levelRobotic instrumentsCellsDrug screeningSame cellsIntact tissueRecordings
2019
A gain-of-function sodium channel β2-subunit mutation in painful diabetic neuropathy
Alsaloum M, Estacion M, Almomani R, Gerrits MM, Bönhof GJ, Ziegler D, Malik R, Ferdousi M, Lauria G, Merkies IS, Faber CG, Dib-Hajj S, Waxman S. A gain-of-function sodium channel β2-subunit mutation in painful diabetic neuropathy. Molecular Pain 2019, 15: 1744806919849802. PMID: 31041876, PMCID: PMC6510061, DOI: 10.1177/1744806919849802.Peer-Reviewed Original ResearchConceptsDiabetic peripheral neuropathyPeripheral neuropathyNeuropathic painDiabetic peripheral neuropathy patientsPainful diabetic peripheral neuropathyDorsal root ganglion neuronsPainful diabetic neuropathyPeripheral neuropathy patientsSodium channel β subunitsSpectrum of patientsUse-dependent inhibitionCardiac conducting systemSodium channel α subunitVoltage-gated sodium channelsChannel α-subunitsSCN11A geneDiabetic neuropathyDiabetes mellitusChronic painNeuropathy patientsGanglion neuronsNegative genetic screeningChannel β subunitHealth sequelaeRepetitive stimulationRat NaV1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers
Grubinska B, Chen L, Alsaloum M, Rampal N, Matson D, Yang C, Taborn K, Zhang M, Youngblood B, Liu D, Galbreath E, Allred S, Lepherd M, Ferrando R, Kornecook T, Lehto S, Waxman S, Moyer B, Dib-Hajj S, Gingras J. Rat NaV1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers. Molecular Pain 2019, 15: 1744806919881846. PMID: 31550995, PMCID: PMC6831982, DOI: 10.1177/1744806919881846.Peer-Reviewed Original ResearchConceptsOlfactory functionNav1.7 proteinPain behaviorPain responseRat modelSmall-diameter dorsal root ganglion neuronsNormal intraepidermal nerve fibre densityIntraepidermal nerve fiber densityIntra-epidermal nerve fibersDorsal root ganglion neuronsNeuropathic pain behaviorsNeuropathic pain responsesSpinal nerve ligationNerve fiber densityDorsal root gangliaAction potential firingPeripheral nervous systemEarly postnatal developmentGenetic animal modelsNav1.7 lossNerve ligationPain targetsNeuropathic conditionsGanglion neuronsRoot ganglia
2018
A novel gain-of-function Nav1.7 mutation in a carbamazepine-responsive patient with adult-onset painful peripheral neuropathy
Adi T, Estacion M, Schulman BR, Vernino S, Dib-Hajj S, Waxman S. A novel gain-of-function Nav1.7 mutation in a carbamazepine-responsive patient with adult-onset painful peripheral neuropathy. Molecular Pain 2018, 14: 1744806918815007. PMID: 30392441, PMCID: PMC6856981, DOI: 10.1177/1744806918815007.Peer-Reviewed Original ResearchConceptsPainful peripheral neuropathyDorsal root gangliaPeripheral neuropathyUse-dependent inhibitionDRG neuronsPain disordersM variantFunction Nav1.7 mutationsMulti-electrode array recordingsSympathetic ganglion neuronsCommon pain disordersVoltage-clamp recordingsVoltage-gated sodium channel NaRare MendelianNav1.7 mutationGanglion neuronsSodium channel NaTrigeminal ganglionRoot gangliaNeonatal ratsPatientsNeuropathyMutant channelsFunction variantsNeurons
2016
Pharmacotherapy for Pain in a Family With Inherited Erythromelalgia Guided by Genomic Analysis and Functional Profiling
Geha P, Yang Y, Estacion M, Schulman BR, Tokuno H, Apkarian AV, Dib-Hajj SD, Waxman SG. Pharmacotherapy for Pain in a Family With Inherited Erythromelalgia Guided by Genomic Analysis and Functional Profiling. JAMA Neurology 2016, 73: 659. PMID: 27088781, DOI: 10.1001/jamaneurol.2016.0389.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAdultAnalgesics, Non-NarcoticBrainCarbamazepineChronic PainDNA Mutational AnalysisDouble-Blind MethodElectric StimulationErythromelalgiaFemaleGanglia, SpinalHumansMagnetic Resonance ImagingMaleMutationNAV1.7 Voltage-Gated Sodium ChannelPain MeasurementRegression AnalysisSensory Receptor CellsConceptsMean episode durationDRG neuronsPatient 1Nav1.7 mutationEpisode durationDorsal root ganglion neuronsPlacebo-controlled studyMaintenance periodAttenuation of painEffects of carbamazepineBrain activityFunctional magnetic resonance imagingMagnetic resonance imagingT mutationMutant channelsFunctional magnetic resonanceNeuropathic painSecondary somatosensoryChronic painPain areaPatient 2Ganglion neuronsEffective pharmacotherapyNight awakeningsPlaceboVoltage-Gated Ion Channels as Molecular Targets for Pain
Zamponi G, Han C, Waxman S. Voltage-Gated Ion Channels as Molecular Targets for Pain. 2016, 415-436. DOI: 10.1007/978-1-4899-7654-3_22.Peer-Reviewed Original ResearchVoltage-gated ion channelsDorsal root ganglion neuronsIon channelsMolecular targetsAction potential firing propertiesTreatment of painVoltage-gated sodiumImportant ion channelsNerve injuryGanglion neuronsPain signalingPeripheral afferentsPainFiring propertiesPharmacological modulatorsPotassium channelsTranslational researchDevelopment of modulatorsFunction changesHyperexcitabilityAfferentsInflammationMajor roleMajor themesInjury
2012
The NaV1.7 sodium channel: from molecule to man
Dib-Hajj SD, Yang Y, Black JA, Waxman SG. The NaV1.7 sodium channel: from molecule to man. Nature Reviews Neuroscience 2012, 14: 49-62. PMID: 23232607, DOI: 10.1038/nrn3404.Peer-Reviewed Original ResearchConceptsDorsal hornPain disordersNerve endingsNociceptive dorsal root ganglion (DRG) neuronsPainful small fiber neuropathyDorsal root ganglion neuronsVoltage-gated sodium channel Nav1.7Small fiber neuropathyTreatment of painFree nerve endingsSecond-order neuronsSmall molecule blockersSodium channel Nav1.7Function mutationsOlfactory sensory neuronsProbability of neuronsNav1.7 sodium channelSuperficial laminaeGanglion neuronsRisk factorsSympathetic neuronsSlow depolarizationSpinal cordCardiac deficitsSensory neuronsStructural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Nav1.7 mutant channel
Yang Y, Dib-Hajj SD, Zhang J, Zhang Y, Tyrrell L, Estacion M, Waxman SG. Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Nav1.7 mutant channel. Nature Communications 2012, 3: 1186. PMID: 23149731, PMCID: PMC3530897, DOI: 10.1038/ncomms2184.Peer-Reviewed Original ResearchGain-of-function Nav1.8 mutations in painful neuropathy
Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JG, Gerrits MM, Pierro T, Lombardi R, Kapetis D, Dib-Hajj SD, Waxman SG. Gain-of-function Nav1.8 mutations in painful neuropathy. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 19444-19449. PMID: 23115331, PMCID: PMC3511073, DOI: 10.1073/pnas.1216080109.Peer-Reviewed Original ResearchConceptsPainful peripheral neuropathySmall fiber neuropathyPainful neuropathyPeripheral neuropathyPainful small fiber neuropathyDorsal root ganglion neuronsSodium channelsApparent underlying causePeripheral nerve axonsDRG neuronsGanglion neuronsNeuropathyNerve axonsUnderlying causeFunction variantsCurrent clampPatientsPotential pathogenicityNeuronsMutationsHyperexcitabilityAxonsResponseGenetic aspects of sodium channelopathy in small fiber neuropathy
Hoeijmakers J, Merkies I, Gerrits M, Waxman S, Faber C. Genetic aspects of sodium channelopathy in small fiber neuropathy. Clinical Genetics 2012, 82: 351-358. PMID: 22803682, DOI: 10.1111/j.1399-0004.2012.01937.x.Peer-Reviewed Original ResearchConceptsSmall fiber neuropathyEtiology of SFNSmall-diameter peripheral axonsIntraepidermal nerve fiber densityDorsal root ganglion neuronsAbnormal thermal thresholdsNerve fiber densityQuantitative sensory testingUnmyelinated C-fibersSFN patientsAutonomic dysfunctionNeuropathic painAδ fibersGanglion neuronsC-fibersPeripheral axonsSensory testingSpecific treatmentSodium channelopathiesApparent causeFiber densitySodium channelsLogical targetNeuropathyPain
2009
Dorsal Root Ganglion Neurons
Rush A, Waxman S. Dorsal Root Ganglion Neurons. 2009, 615-619. DOI: 10.1016/b978-008045046-9.01660-0.Peer-Reviewed Original Research
2007
Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons
Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. The Journal Of Physiology 2007, 579: 1-14. PMID: 17158175, PMCID: PMC2075388, DOI: 10.1113/jphysiol.2006.121483.Peer-Reviewed Original ResearchConceptsSodium channel isoformsDorsal root ganglion neuronsChannel isoformsDRG neuronsGanglion neuronsSpecific sodium channel isoformsMultiple sodium channelsSodium channelsPattern of expressionModulatory moleculesDisease insultsModulation of channelsPlasticity of expressionNeuronsDifferent subclassesExcitabilityDistinct biophysical characteristicsIsoformsExpressionBody of literatureInsultImportant roleResponse
2006
Mutations in the sodium channel Nav1.7 underlie inherited erythromelalgia
Dib-Hajj S, Rush A, Cummins T, Waxman S. Mutations in the sodium channel Nav1.7 underlie inherited erythromelalgia. Drug Discovery Today Disease Mechanisms 2006, 3: 343-350. DOI: 10.1016/j.ddmec.2006.09.005.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsSympathetic ganglion neuronsDorsal root gangliaHigh-frequency firingSingle action potentialSodium channel Nav1.7Mild thermal stimuliSevere painDRG neuronsPainful conditionsGanglion neuronsRoot gangliaChannel Nav1.7Action potentialsModel diseaseThermal stimuliErythromelalgiaNeuronsMutant channelsFunctional studiesIEMPainGangliaNav1.7MutationsDisease