Featured Publications
Transcriptome-wide quantification of double-stranded RNAs in live mouse tissues by dsRIP-Seq
Gao Y, Chen S, Halene S, Tebaldi T. Transcriptome-wide quantification of double-stranded RNAs in live mouse tissues by dsRIP-Seq. STAR Protocols 2021, 2: 100366. PMID: 33778776, PMCID: PMC7982789, DOI: 10.1016/j.xpro.2021.100366.Peer-Reviewed Original ResearchConceptsDouble-stranded RNALive mouse tissuesDeleterious innate immune responseInnate immune responseEndogenous double-stranded RNAMouse tissuesMultiple regulatory functionsRecognition of RNADownstream computational analysisImmune responseRNA editingActivate innate immune responsesRegulatory functionsComplete detailsRNAImmunoprecipitationTissue isolationComplete protocolGao etComputational analysisSequencingTissueEditingm6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development
Gao Y, Vasic R, Song Y, Teng R, Liu C, Gbyli R, Biancon G, Nelakanti R, Lobben K, Kudo E, Liu W, Ardasheva A, Fu X, Wang X, Joshi P, Lee V, Dura B, Viero G, Iwasaki A, Fan R, Xiao A, Flavell RA, Li HB, Tebaldi T, Halene S. m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development. Immunity 2020, 52: 1007-1021.e8. PMID: 32497523, PMCID: PMC7408742, DOI: 10.1016/j.immuni.2020.05.003.Peer-Reviewed Original ResearchConceptsDouble-stranded RNADeleterious innate immune responseMammalian hematopoietic developmentEndogenous double-stranded RNAHematopoietic developmentInnate immune responseAbundant RNA modificationMurine fetal liverPattern recognition receptor pathwaysImmune responseProtein codingDsRNA formationRNA modificationsWriter METTL3Hematopoietic defectsPerinatal lethalityNative stateConditional deletionAberrant innate immune responsesLoss of METTL3Hematopoietic failureReceptor pathwayAberrant immune responsePrevents formationFetal liverA highly efficient and faithful MDS patient-derived xenotransplantation model for pre-clinical studies
Song Y, Rongvaux A, Taylor A, Jiang T, Tebaldi T, Balasubramanian K, Bagale A, Terzi YK, Gbyli R, Wang X, Fu X, Gao Y, Zhao J, Podoltsev N, Xu M, Neparidze N, Wong E, Torres R, Bruscia EM, Kluger Y, Manz MG, Flavell RA, Halene S. A highly efficient and faithful MDS patient-derived xenotransplantation model for pre-clinical studies. Nature Communications 2019, 10: 366. PMID: 30664659, PMCID: PMC6341122, DOI: 10.1038/s41467-018-08166-x.Peer-Reviewed Original ResearchConceptsPatient-derived xenograftsMyelodysplastic syndromeXenotransplantation modelDysplastic morphologyImmunodeficient murine hostsPre-clinical studiesMDS stem cellsMDS subtypesComprehensive preclinical studiesPreclinical studiesTherapeutic efficacyMurine hostSerial transplantationDrug mechanismsMDS researchStem cell propagationStem cellsDifferentiation potentialHematopoietic stem cell nicheGenetic complexityNovel avenuesStem cell nicheCell propagationDisease representationsImmunodeficient
2015
SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition
Kim E, Ilagan JO, Liang Y, Daubner GM, Lee S, Ramakrishnan A, Li Y, Chung YR, Micol JB, Murphy ME, Cho H, Kim MK, Zebari AS, Aumann S, Park CY, Buonamici S, Smith PG, Deeg HJ, Lobry C, Aifantis I, Modis Y, Allain F, Halene S, Bradley RK, Abdel-Wahab O. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Cancer Cell 2015, 27: 617-630. PMID: 25965569, PMCID: PMC4429920, DOI: 10.1016/j.ccell.2015.04.006.Peer-Reviewed Original Research
2014
SRF is required for neutrophil migration in response to inflammation
Taylor A, Tang W, Bruscia EM, Zhang PX, Lin A, Gaines P, Wu D, Halene S. SRF is required for neutrophil migration in response to inflammation. Blood 2014, 123: 3027-3036. PMID: 24574460, PMCID: PMC4014845, DOI: 10.1182/blood-2013-06-507582.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonActinsAnimalsBlotting, WesternCell AdhesionCell MovementChemokinesGene ExpressionInflammationIntegrinsMiceMice, KnockoutMice, TransgenicMicroscopy, ConfocalNeutrophilsN-Formylmethionine Leucyl-PhenylalaninePolymerizationReverse Transcriptase Polymerase Chain ReactionSerum Response FactorSignal TransductionConceptsKO neutrophilsNeutrophil functionNormal neutrophil numbersSerum response factorSites of inflammationRole of SRFLoss of SRFNeutrophil numbersNeutrophil migrationMalignant processNeutrophilsCytokine stimuliChemokine gradientsCell functionExpression levelsIntegrin expression levelsInflammationMicePrimary defenseMegakaryocyte maturationNormal cell functionVivoCellular adhesionMaster regulatorIntegrin activation
2009
C/EBPε directs granulocytic-vs-monocytic lineage determination and confers chemotactic function via Hlx
Halene S, Gaines P, Sun H, Zibello T, Lin S, Khanna-Gupta A, Williams SC, Perkins A, Krause D, Berliner N. C/EBPε directs granulocytic-vs-monocytic lineage determination and confers chemotactic function via Hlx. Experimental Hematology 2009, 38: 90-103.e4. PMID: 19925846, PMCID: PMC2827304, DOI: 10.1016/j.exphem.2009.11.004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Marrow CellsCCAAT-Enhancer-Binding ProteinsCell DifferentiationCell LineChemotaxis, LeukocyteGene ExpressionGranulocyte-Macrophage Colony-Stimulating FactorGranulocytesHematopoietic Stem CellsHomeodomain ProteinsMiceMice, KnockoutMonocytesMyelopoiesisNeutrophilsReceptors, ChemokineTranscription FactorsTransduction, GeneticConceptsKO cellsNew regulatory functionCommon myeloid progenitorsNeutrophil-specific granule deficiencyProgenitor cell lineCell linesRestoration of expressionDifferentiated cell linesSpecific granule deficiencyLineage-specific cell surface antigensLineage decisionsLineage determinationEpsilon geneCCAAT enhancerDeficiency phenotypeRegulatory functionsChemotaxis defectIntermediate cell typeKO bone marrowPerformed expressionNeutrophil differentiationCell typesFunctional studiesNeutrophil maturationMyeloid progenitors
2000
Gene Therapy Using Hematopoietic Stem Cells: Sisyphus Approaches the Crest
Halene S, Kohn D. Gene Therapy Using Hematopoietic Stem Cells: Sisyphus Approaches the Crest. Human Gene Therapy 2000, 11: 1259-1267. PMID: 10890736, DOI: 10.1089/10430340050032366.Commentaries, Editorials and Letters
1999
Improved Expression in Hematopoietic and Lymphoid Cells in Mice After Transplantation of Bone Marrow Transduced With a Modified Retroviral Vector
Halene S, Wang L, Cooper R, Bockstoce D, Robbins P, Kohn D. Improved Expression in Hematopoietic and Lymphoid Cells in Mice After Transplantation of Bone Marrow Transduced With a Modified Retroviral Vector. Blood 1999, 94: 3349-3357. PMID: 10552944, PMCID: PMC9071851, DOI: 10.1182/blood.v94.10.3349.422k05_3349_3357.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAnimalsBone Marrow TransplantationFemaleGene DosageGene ExpressionGene Transfer TechniquesGenetic TherapyGenetic VectorsGreen Fluorescent ProteinsHematopoietic Stem CellsLeukemia Virus, MurineLuminescent ProteinsLymphocytesMaleMiceMice, Inbred C57BLPolymerase Chain ReactionRetroviridaeTime FactorsTransduction, GeneticConceptsEnhanced green fluorescent proteinHematopoietic cellsMoMuLV LTRMammalian hematopoietic cellsMurine embryonic stem cellsStem cellsEmbryonic stem cellsRetroviral vectorsGreen fluorescent proteinMoloney murine leukemia virusMouse bone marrow transplant modelReliable gene expressionHematopoietic stem cellsStable gene transferMurine leukemia virusGene expressionMND vectorTransduction efficiencyFluorescent proteinCopy numberGene transferIndividual cellsAmount of proteinVector copy numberBone marrow transplant model
1998
Consistent, persistent expression from modified retroviral vectors in murine hematopoietic stem cells
Robbins P, Skelton D, Yu X, Halene S, Leonard E, Kohn D. Consistent, persistent expression from modified retroviral vectors in murine hematopoietic stem cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 10182-10187. PMID: 9707621, PMCID: PMC21482, DOI: 10.1073/pnas.95.17.10182.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceBone Marrow TransplantationColony-Forming Units AssayDNA MethylationDNA PrimersDNA, RecombinantFemaleFounder EffectGene ExpressionGene Transfer TechniquesGenetic VectorsHematopoietic Stem CellsMaleMiceMice, Inbred C57BLMoloney murine leukemia virusRepetitive Sequences, Nucleic AcidRetroviridaeTransduction, GeneticTransplantation, IsogeneicVirus Integration