2020
Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease
Zhang C, Balbo B, Ma M, Zhao J, Tian X, Kluger Y, Somlo S. Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease. Journal Of The American Society Of Nephrology 2020, 32: 41-51. PMID: 33046531, PMCID: PMC7894654, DOI: 10.1681/asn.2020040511.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCatalytic DomainCDC2 Protein KinaseCell ProliferationCrosses, GeneticDNA ReplicationExome SequencingFemaleGene Expression ProfilingGene Expression RegulationMaleMiceMice, Inbred C57BLMice, KnockoutMutationPhenotypePolycystic Kidney, Autosomal DominantPyruvate Dehydrogenase Acetyl-Transferring KinaseRNA-SeqTranscription, GeneticTRPP Cation ChannelsConceptsAutosomal dominant polycystic kidney diseaseCyst cell proliferationPolycystic kidney diseaseKidney diseaseADPKD progressionCell proliferationModel of ADPKDCyst growthProgression of ADPKDDominant polycystic kidney diseaseDouble knockout miceCandidate pathwaysKidney functionCyst progressionMouse modelUnbiased transcriptional profilingProgressionCellular mechanismsKinase 1 activityCystic phenotypeSelective targetingKidneyConditional inactivationDouble knockoutProliferation
2015
Human Polycystin-2 Transgene Dose-Dependently Rescues ADPKD Phenotypes in Pkd2 Mutant Mice
Li A, Tian X, Zhang X, Huang S, Ma Y, Wu D, Moeckel G, Somlo S, Wu G. Human Polycystin-2 Transgene Dose-Dependently Rescues ADPKD Phenotypes in Pkd2 Mutant Mice. American Journal Of Pathology 2015, 185: 2843-2860. PMID: 26435415, PMCID: PMC4607765, DOI: 10.1016/j.ajpath.2015.06.014.Peer-Reviewed Original ResearchConceptsAutosomal dominant polycystic kidney diseaseMouse modelADPKD phenotypeSevere cystic phenotypeWild-type miceDose-dependent mannerPolycystic kidney diseaseForms of ADPKDKidney diseasePancreatic cystsEffective treatmentFunctional restorationMutant miceTransgene doseMiceCyst formationReduced proliferationEpithelial cellsCystic phenotypeKidneyLiverFurther ameliorationPC2 activityPhenotypeMolecular genetic mechanisms