2018
Nav1.5 in astrocytes plays a sex‐specific role in clinical outcomes in a mouse model of multiple sclerosis
Pappalardo LW, Samad OA, Liu S, Zwinger PJ, Black JA, Waxman SG. Nav1.5 in astrocytes plays a sex‐specific role in clinical outcomes in a mouse model of multiple sclerosis. Glia 2018, 66: 2174-2187. PMID: 30194875, DOI: 10.1002/glia.23470.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAstrocytesBrainCalcium-Binding ProteinsDisease ProgressionEncephalomyelitis, Autoimmune, ExperimentalFemaleGlial Fibrillary Acidic ProteinMaleMice, Inbred C57BLMice, KnockoutMicrofilament ProteinsMonocytesMultiple SclerosisNAV1.5 Voltage-Gated Sodium ChannelSex CharacteristicsSpinal CordT-LymphocytesConceptsExperimental autoimmune encephalomyelitisMultiple sclerosisClinical outcomesSex-specific mannerInflammatory infiltrateEAE clinical scoreT cell infiltrationWT littermate controlsAutoimmune encephalomyelitisNeuroinflammatory disordersClinical courseClinical scoresAstroglial responseUnderlying molecular mechanismsSex-specific roleCell infiltrationFemale miceKO miceT cellsImmune responseMurine modelPossible dysregulationMouse modelLittermate controlsTherapeutic target
2014
Dynamics of sodium channel Nav1.5 expression in astrocytes in mouse models of multiple sclerosis
Pappalardo LW, Liu S, Black JA, Waxman SG. Dynamics of sodium channel Nav1.5 expression in astrocytes in mouse models of multiple sclerosis. Neuroreport 2014, 25: 1208-1215. PMID: 25144393, PMCID: PMC4159404, DOI: 10.1097/wnr.0000000000000249.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAstrocytesEncephalomyelitis, Autoimmune, ExperimentalImmunohistochemistryLumbar VertebraeMice, BiozziMice, Inbred C57BLMotor CortexMultiple Sclerosis, Chronic ProgressiveMultiple Sclerosis, Relapsing-RemittingNAV1.5 Voltage-Gated Sodium ChannelSeverity of Illness IndexSpinal CordUp-RegulationConceptsExperimental autoimmune encephalomyelitisCentral nervous systemMultiple sclerosisNervous systemChronic multiple sclerosis lesionsNav1.5 expressionPhases of relapsePeriods of remissionGlial scar formationResponse of astrocytesSeverity of diseasePotential therapeutic targetMultiple sclerosis lesionsVoltage-gated sodium channel Nav1.5Autoimmune encephalomyelitisNeuroinflammatory pathologiesIntracellular Ca levelsReactive astrogliosisGlial scarInflammatory pathologyMouse modelImmunohistochemical analysisScar formationTherapeutic targetAstrocytesTapered withdrawal of phenytoin removes protective effect in EAE without inflammatory rebound and mortality
Liu S, Zwinger P, Black JA, Waxman SG. Tapered withdrawal of phenytoin removes protective effect in EAE without inflammatory rebound and mortality. Journal Of The Neurological Sciences 2014, 341: 8-12. PMID: 24690348, DOI: 10.1016/j.jns.2014.03.029.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDisease Models, AnimalDrug Administration ScheduleEncephalomyelitis, Autoimmune, ExperimentalMiceMice, Inbred C57BLMyelin-Oligodendrocyte GlycoproteinNeurologic ExaminationNeuroprotective AgentsPeptide FragmentsPhenytoinTime FactorsConceptsExperimental autoimmune encephalomyelitisSodium channel blockersImmune cell infiltratesMultiple sclerosisChannel blockersNeurological deficitsPhenytoin treatmentCell infiltrateTapered withdrawalTreatment of MSModel of MSSudden withdrawalMassive inflammatory infiltrateNon-treated levelsPotential therapeutic agentInflammatory reboundSevere exacerbationsAutoimmune encephalomyelitisNeuroprotective therapiesInflammatory infiltrateClinical scoresAbrupt withdrawalProtective effectHigh mortalityInfiltrates
2007
Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine
Black JA, Liu S, Carrithers M, Carrithers LM, Waxman SG. Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine. Annals Of Neurology 2007, 62: 21-33. PMID: 17654737, DOI: 10.1002/ana.21172.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnticonvulsantsAntigens, CDAxonsCarbamazepineCell CountDisease Models, AnimalEncephalomyelitis, Autoimmune, ExperimentalFlow CytometryGene Expression RegulationGlycoproteinsMiceMice, Inbred C57BLMyelin-Oligodendrocyte GlycoproteinNAV1.6 Voltage-Gated Sodium ChannelNerve Tissue ProteinsPeptide FragmentsPhenytoinPyramidal TractsSeverity of Illness IndexSodium ChannelsSubstance Withdrawal SyndromeConceptsExperimental autoimmune encephalomyelitisSodium channel blockersWithdrawal of phenytoinChannel blockersAutoimmune encephalomyelitisInflammatory infiltrateClinical studiesProtective effectMurine experimental autoimmune encephalomyelitisWithdrawal of carbamazepineCentral nervous system axonsCentral nervous systemAcute exacerbationAcute worseningClinical worseningEAE symptomsEAE miceNeuroinflammatory disordersClinical courseMyelin oligodendrocyteClinical statusControl miceMultiple sclerosisImmune cellsLong-term effects
2006
Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE
Black JA, Liu S, Hains BC, Saab CY, Waxman SG. Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Brain 2006, 129: 3196-3208. PMID: 16931536, DOI: 10.1093/brain/awl216.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAdministration, OralAnimalsAxonsCell CountCervical VertebraeChronic DiseaseEncephalomyelitis, Autoimmune, ExperimentalImmunohistochemistryInjections, SubcutaneousMiceMice, Inbred C57BLMyelin ProteinsMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinNeural ConductionPhenytoinRecurrenceSodium Channel BlockersSpinal CordTreatment OutcomeConceptsExperimental autoimmune encephalomyelitisC57/BL6 miceChronic-relapsing experimental autoimmune encephalomyelitisBL6 miceLong-term protectionAxonal degenerationClinical statusDays post-EAE inductionMurine experimental autoimmune encephalomyelitisLong-term protective effectPhenytoin-treated miceInflammatory cell infiltrationDorsal column axonsCompound action potentialSodium channel blockersAutoimmune encephalomyelitisAxonal lossPhenytoin treatmentUntreated miceNeuroinflammatory diseasesDorsal columnsMultiple sclerosisCNS injuryCell infiltrationCorticospinal tract
2004
Sodium channels contribute to microglia/macrophage activation and function in EAE and MS
Craner MJ, Damarjian TG, Liu S, Hains BC, Lo AC, Black JA, Newcombe J, Cuzner ML, Waxman SG. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia 2004, 49: 220-229. PMID: 15390090, DOI: 10.1002/glia.20112.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsDisease Models, AnimalEncephalomyelitis, Autoimmune, ExperimentalFemaleGliosisMacrophagesMaleMiceMice, Inbred C57BLMicrogliaMultiple SclerosisNAV1.6 Voltage-Gated Sodium ChannelNerve DegenerationNerve Tissue ProteinsNeuroprotective AgentsPhagocytosisPhenytoinRNA, MessengerSodium Channel BlockersSodium ChannelsTetrodotoxinUp-RegulationConceptsExperimental autoimmune encephalomyelitisMultiple sclerosisSodium channel blockersSodium channelsMicroglial activationChannel blockersPhagocytic capacityMicroglia/macrophage activationSpecific sodium channel blockerAcute MS lesionsDirect neuroprotective effectsPhagocytosis of microgliaActivation of microgliaAnti-inflammatory mechanismsSodium channel-blocking drugsInflammatory cell infiltrateLoss of axonsDisease multiple sclerosisSodium channel blockadeChannel-blocking drugsAxonal sodium channelsAutoimmune encephalomyelitisInflammatory mechanismsNeuroinflammatory disordersCell infiltrate